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Completely Positive Matrices Having Cyclic Graphs *
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Abstract: We prove that a CP matrix 4 having cyclic graph has exactly two minimal
rank 1 factorization if detM(A) > 0 and has exactly one minimal rank 1 factorization if

detM(A) = 0.
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An n x n matrix A is said to be completely positive, or in short C P, if there exist k
nonnegative column vectors by, bs, -+, b € R™ such that

A= b7 40,07 + oo 4 bybT (1)

The smallest such number k, denoted by C PrankA, is called the factorization index of
A and (1) is called the minimal rank 1 factorization of A if £ = C'PrankA. For a given
n x n symmetric matrix A, the graph G(A) = (V, E) of A is defined by V(G(A)) = [n] =
{1,2,---,n} and E(G(A)) = {(¢,j) : 1, € [n] and a;; # 0}. A graph G is completely
positive if each of its doubly nonnegative matrix realizations is completely positive. For a
real matrix A, the comparison matrix of A, denoted by M(A), is defined to be the matrix
whose diagonal entries are the absolute values of those of A and whose off-diagonal entries
are the negatives of the absolute values of those of A. Let A be an n X n matrix and let
a,B C [n],a,B # ¢. We denote by A[a|f] the submatrix of A whose rows are indexed
by a and whose columns are indexed by 3 in their natural orders and denote Alaja] by
Ala]. In addition, the determinants of A[a|3] and A[a] are denoted by A(a|3) and A(«),
respectively.

In this paper, we prove that a completely positive matrix having cyclic graph has
exactly two the minimal rank 1 factorization if detM(A) > 0, and has exactly one the
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minimal rank 1 factorization if det M ((A) = 0.

Lemma 112 Let H be a matrix in Z™*", in other words, all the entries of off-diagonal of
H are nonpositive. Then H is an M -matrix if and only if all of principal minors of H are
nonnegative.

Theorem 2 Let A be an n X n nonnegative matrix whose graph is a cycle of order n > 4.
Then A is CP if and only if det M(A) > 0. Moreover if A is CP, then C PrankA = n.

Proof Suppose A is CP. Clearly G(A) is triangle-free since G(A) is a cycle of order n > 4.
Hence M(A) is an M-matrix by [3]. Thus detM(A4) > 0 by Lemma 1.

Conversely suppose detM(A) > 0. Then A; = A[l,---,i—1,i+ 1,---,n] is a doubly
nonnegative matrix whose graph is a tree of order n — 1 for each 7 € [n]. So A; is CP by
[1]. Hence M (A;) is an M-matrix of order n — 1 by [3]. Furthermore, all principal minors
of M(A;) are nonnegative by Lemma 1. Obviously each principal minor of less than order
n in M(A) is a principal minor of some M(4;). In addition, detM(A) > 0. Hence all of
principal minors of M(A) are nonnegative. Therefore M(A) is an M-matrix by Lemma
1. Thus A € CP by [3].

Finally, we prove that C PrankA = n. Since A is CP and G(A) is triangle-free, A has
a minimal rank 1 factorization (1) in which each b; has at most 2 positive entries by [3].
Hence A has at most 2k positive off-diagoral entries. In addition, A has 2n positive off-
diagonal entries because G(A) is a cycle of order n. Hence 2k > 2n,i.e. CPrankA4 =k > n.
On the other hand, since G(A) is triangle-free and M(A) is an M-matrix, C PrankA <
max{|V(G(A))|,|E(G(A))|} = n by [3]. and |[V(G(A))| = |E(G(A))| = n. This shows that
CPrankA = n.

Remark 3 It is easy to see from Theorem 2 and its proof that, in a minimal rank
1 factorization of A, each b; has exactly two positive entries and the subscripts of the
b;’s can be chosen so that the inner product of b; and b;;; is positive for ¢ € [n], where
bn+1 = b].

Let A be a doubly nonnegative matrix whose graph is a cycle of order n > 4. Without
loss of generality, we may suppose

aip a2 0 - 0 a1n
az1 az2 a3 0 0
0 a3z dgg 0 0
A= (2)
0 0 0 crr OGpn-1n—-1 Qn-1n
an1 0 0 Tt Ay n—1 Apn

Lemma 4 Let A be a doubly nonnegative matrix in the form (2). Then
(i) annM(A)2,---,n) - a2, M(A)3, -+ ,n) = detM(A) + a?, M(A)(2,---,n — 1) +
2012023 An—1,nGn1,
(if) M(A)(1,2,---,n—-1)M(A)2,---,n) = M(A)
+a1nM(A)(2v = 1))27
A1, n =)

—_—

M(A)(n - 2) 1

2,---,n-1)detM(A)+(ai2a23 - - @n-1n

> >

Ly M(
(iii) MLm= 1) Tz M(An-2,n-1) " ap_1n-1



Proof Clearly,

—az1 —azy - 0 0
ass 0 0
detM(A) = auM(A)(Z,-~,n)+a12 . -+
—an) 0 —Qn.n-1 Apn
—Qz1  dzp  —as3 0
0 ~agy 33 0
(-1)ay, e
0 0 0 Tt Gpo1n-—1
—an1 0 0 e —Qpon—1
= auM(A)(Q, T ,n) - asz(A)(3, T ,n) — Q120423 * - Ap-1,nQn1 —
a%nM(A)(2’ e, — 1) — @12Q23 " " Qp_1 nlni-

Thus (i) holds.
We define a 2 X 2 matrix § = (s;;) as follows:

s11 = M(A)(1,---,n—1), s12=M(A1, - ,n-12,---,n),
s91 = M(A)(2,---,nl,---,n—1), s = M(A)(2, --,n).
It follows from sylvester’s identity (e.g.[4]) that
detS = M(A)(2,---,n— 1)det M (A).
On the other hand

detS = 511890 — 512891 = M(A)(l, T, 1)M(A)(2, T a") -
((112(123 o lp-1n + (11”M(A)(2, e, — 1))2

Thus (i) holds.

By using the similar method in (ii), it is easy to prove that M(A)(1,---,n — 2)M(A)
(2,---,n—1) > M(A)1,---,n - 1)M(A)2,---,n — 2). i.e. the first inequality of (iii)
holds. The others are proved similarly.

Let A be a CP matrix in form (2). Then C PrankA = n by Theorem 2. We may
assume by = (by1,b21,0,---,0)7,by = (0,b22,b32,0,---,0)T, -+, b, = (b1,,0,--+,0,b,)7
and b;;,b; ;11 are positive for each i € [n] by Remark 3.

Theorem 5 Let A be a C P matrix having cyclic graph. Then A has exactly two minimal
rank 1 factorizations if det M (A) > 0, and has exactly one minimal rank 1 factorization if

detM(A) = 0.

Proof Without loss of generality, let A be in form (2). It is easy to see that the number
of minimal rank 1 factorizations of A is equal to the number of positive solutions of the
following equations:
b3, + b7, = au1, bi1bay = asz,
b3 + b3y = aso, ba2bsz = ass,

(3)

2 2 _ _
bn.,n—] + b”n‘ = Qpn, b'n,nbln, = Q1p.

— 929 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Put b,,,, = z. Then it follows from (3) that

Ap—1n
bn,n——l = App — 32’ bn,—-1~”_1 - \_/m—-—]}_z’
b — M(A)(k,,n)—M(A)(k,,n— 1)132 b — ar—1.k
bk M(A)(k+1a7n)_M(A)(k+1v7n— l)zz’ Fobbet bk.k—l’

; a1 M(A)(2, -+ ,n) — al, M(A)3,---,n) — M(A)1,---,n ~ 1)x?
T M(A)2, - ,n)— M(A)(2,-- ,n— 1)z?
B detM(A) + a2, M(A)(2,---,n— 1)+ 2a15 - an; — M(A)(1, - ,n— 1)z>
B M(A)(?,---,n)—M(A)(Q,-u,n—1)1:2 ’
=n-1,---,2,(M(A)(#) = 1), by using Lemma 4(i). In addition b;,, = **. Therefore,
we have the following equation
M(A)(1,---,n —1)z* — [det M(A) + 2a3, M(A)(2,---,n — 1) +
2(1120.23 R an_l,"a"l]mz + G.%HM(A)(Q, s ,n) == 0 (4)

The discriminant of equation (4) is
A = [detM(A)+2a:, M(A)2, --,n~1)+2a13- - an]® -
4a, M(A)1,---,n— D)M(A)(2,---,n)
= (detM(A))* + 4ays - a,det M(4) > 0
by using Lemma 4(ii) and Theorem 2. Since a?, M(A)(2,---,n) > 0, it is easy to see

that (4) has exactly two positive solutions if det M (A) > 0, and has exactly one positive
solution if det M (A) = 0. Furthermore for each positive solution z of (4), we have

M(A)(k,---,n) — M(A)(k,---,n—1)z?

= apn M(A)(k,---,n—1)—al_ |, M(A)(k,---,n—2) - M(A)(k, -,n—1)x

detM(A) + 2a3, M(A)2,---,n— 1)+ 2a15 -~ @y £ VA
2M(A)L,---,n—1)

_ M(A)k,---,n~1)

T 2M(AY)(Y, -, —1)
2a2, M(A)(2, -, n—1) 4 2012 a,y £ VA) — a2 M(A)(k, - ,n —2)

— M(A)(k,---,n—l)

TOMAYL, - no1)
[(2det M (A) + 223, M(A)(2,---,n — 1)+ 2d>_ ,M(A)(1, -, n —2) +4a12am) —

n—1mn
(detM(A) + 2(1%11M(A)(2, e, — 1) + 2(112 SR + \/K)] — ai_lan(A)(k, ceem—
M)k, m — 1) )
- ’ detM(A) + 2a15 -+ - 4y FVA
2M(A)(1”n_1)( € ( )+ ajg a 1+\/7)_+_
2 (MA), - n = 2)M(A)(k,- -, n—1)
aﬂ—ln[ z
s M(A)(]-)7n—1)
>0a k:’n—l’...,Q

(20 M(A)(1, - n — 1) — (detM(A) +

- M(A)k,---,n—2)]
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by Lemma 2.4 (i) and (iii). Therefore the number of positive solutions of (4) is equal to
the number of positive solutions of (3). Thus the result holds.
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