BMO and Singular Integrals over Certain Disconnected Groups *

ZHU Yue-ping¹, ZHENG Wei-xing²

- (1. Dept. of Math., Nantong Teachers' College, 226007;
- 2. Dept. of Math., Nanjing University, 210093)

Abstract: In this paper the authors study proprieties of certain convolution operators on $L^{\infty}(G)$ and weighted $BMO(\alpha)(G)$ spaces,where G is a locally compact totally disconnected group with a suitable sequence of open compact subgroups. The authors prove that if the kernel satisfies certain conditions, then the convolution operator is bounded from L^{∞} to $BMO(\alpha)$ or from $BMO(\alpha)$ to $BMO(\alpha)$.

Key words: singular integral; BMO; weighted inequality.

Classification: AMS(1991) 42B25/CLC O174.2

Document code: A Article ID: 1000-341X(2000)01-0037-06

1. Definitions and notation

Throughout this paper, G will denote a locally compact Abelian topological group with a suitable collection of open compact subgroups in the sense of Edwards and Gaudry^[2]. This means that there exists a strictly decreasing sequence $\{G_n\}_{n\in\mathbb{Z}}$ of open compact subgroups of G such that

- (i) $G_{n+1} \in G_n$ and $\sup\{\operatorname{order}(G_n/G_{n+1})\} < \infty$;
- (ii) $\cup_{-\infty}^{\infty} G_n = G$ and $\cap_{-\infty}^{\infty} G_n = \{0\};$
- (iii) $\mu(G_0) = 1, \mu$ denotes the Haar measure on G.

Such groups are the locally compact analogue of the so-called Vilenkin groups which were first described by N.Ya Vilenkin in 1947. Examples of such groups are the additive group of the p-adic numbers and, more generally, of a local field, see [1].

Let Γ denote the dual group of G, and Γ_n the annihilator of G_n in Γ for each $n \in \mathbb{Z}$. Then $(\Gamma_n)_{-\infty}^{\infty}$ is a strictly increasing sequence of open compact subgroup of Γ such that

- (iv) order (Γ_{n+1}/Γ_n) = order (G_n/G_{n+1}) ;
- (v) $\cup_{-\infty}^{\infty}\Gamma_n = \Gamma$ and $\cap_{-\infty}^{\infty}\Gamma_n = \{1\};$
- (vi) $\lambda(\Gamma_0) = 1$, where λ denotes the Haar measure on Γ .

Biography: ZHU Yue-ping (1965-), female, associate professor.

^{*}Received date: 1997-03-26

Let $\mu(G_n) = (\lambda(\Gamma_n))^{-1} = m_n^{-1}$, for each $n \in \mathbb{Z}$. For all $\alpha > 0, k \in \mathbb{Z}$ we have ([3])

$$\sum_{n=k}^{\infty} m_n^{-\alpha} \le C m_k^{-\alpha},\tag{1}$$

$$\sum_{n=-\infty}^{k} m_n^{\alpha} \le C m_k^{\alpha}. \tag{2}$$

For $\alpha \in \mathbf{R}$, we define the function $v_{\alpha}: G \to \mathbf{R}$ by

$$v_{lpha}(x) = \left\{ egin{array}{ll} m_n^{-lpha}, & ext{ for } x \in G_n \setminus G_{n+1}, \ 0, & ext{ for } x = 0. \end{array}
ight.$$

If G is the additive group of a local field, $v_1(x) = |x|$ and, hence $v_{\alpha}(x) = |x|^{\alpha}$ for all $x \in G$. We denote the L_p spaces with respect to the measures $\mu_{\alpha} = v_{\alpha} d\mu$ on G by $L_{p,\alpha}(G)$. $L_{p,\alpha}(G) = \{f : f \text{ is a measurable function on } G \text{ and } G$

$$\|f\|_{p,lpha}=(\int_G|f(x)^pv_lpha(x)\mathrm{d}\mu(x))^{rac{1}{p}}<\infty\}(1\leq p<\infty).$$

We say a locally integrable function f has bounded mean oscillation, i.e., $f \in \text{BMO}(\alpha)$, if

$$f_{\mu_{\alpha}}^{\#}(x) = \sup_{n} \frac{1}{\mu_{\alpha}(x + G_{n})} \int_{x + G_{n}} |f(y) - f_{x + G_{n}}| v_{\alpha}(x) d\mu(x) < \infty, \text{a. e. on } G,$$
 (3)

where for a measurable set B of positive measure, $f_B = \frac{1}{\mu_{\alpha}(B)} \int_B f(x) v_{\alpha}(x) d\mu(x)$. We let $||f||_{\text{BMO}(\alpha)} = ||f_{\mu_{\alpha}}^{\#}||_{\infty}$. An equivalent norm for BMO(α) is obtained if the L_1 -norm in (3) is replaced by the L_p -norm for any $p \in (1, \infty)$.

Let $k \in L_{loc}(G \setminus \{0\})$ such that the integral operator T defined by

$$Tf(x) = p. v. \int k(x-y)f(y)d\mu(y)$$
 (4)

is bounded on $L_{2,\alpha}$. We say k satisfies condition $C_r, 1 < r < \infty$, if k is locally in L_r on $G \setminus \{0\}, k$ has mean value zero, and there exist $C, \varepsilon > 0$ such that for all $l, n \in \mathbb{Z}$ with n < l we have

$$\sup_{\boldsymbol{y} \in G_l} (\int_{G_n \setminus G_{n+1}} |k(\boldsymbol{x} - \boldsymbol{y}) - k(\boldsymbol{x})|^r \mathrm{d}\mu(\boldsymbol{x}))^{\frac{1}{r}} \leq C m_n^{\epsilon + \frac{1}{r'}} m_l^{-\epsilon} \text{ if } 1 < r < \infty \tag{5}$$

and there exists C > 0 so that for all $l \in \mathbf{Z}$ we have

$$\sup_{y \in G_t} \int_{G \setminus G_t} |k(x-y) - k(x)| \mathrm{d}\mu(x) \le C \text{ if } r = 1.$$
 (6)

For example, if G=(K,+), K is a local field with the notation of ([1]), $G_n=\mathcal{P}^n$, a large class of kernels k that satisfy the condition C_1 are smooth homogeneous kernels $k(x)=\frac{\Omega(x)}{|x|}$ where $\Omega(\beta^j x)=\Omega(x)$ for $x\neq 0, j\in \mathbf{Z}, \int_{|x|=1}\Omega(x)\mathrm{d}\mu(x)=0$, and $\sup_{|y|=1}\sum_{j=1}^{\infty}\int_{|x|=1}|\Omega(x+\beta^j y)-\Omega(x)|\mathrm{d}\mu(x)<\infty$.

In this paper, we consider more general classes of kernels defined by C_r and give direct proofs of the boundedness of the corresponding operator on BMO(α).

2. Estimates on BMO(α) for Convolution Operator

Throughout this part we denote $x + G_n$ by G'_n , and the weighted mean of f on G_n by f_{G_n} .

Theorem 2.1 Let $f \in L^{\infty}$ and be supported on a set of finite measure. If $k \in C_r(1 \le r < \infty)$, then Tf exists a.e., $Tf \in BMO(\alpha)$ and $||Tf||_{BMO(\alpha)} \le C||f||_{\infty}$, where C is independent of f.

Proof Since $f \in L_{\infty} \subset L_{2,\alpha}$, Tf exists a.e. Let $E = \{x \in G : Tf(x) \text{ exists }\}$ and x_0 be a point of density of E. For $n_0 \in Z$, consider the set $G'_{n_0} = x_0 + G_{n_0}$. Write f as $f(x) = f_{G'_{n_0}} + [f(x) - f_{G'_{n_0}}]\chi_{G'_{n_0}}(x) + [f(x) - f_{G'_{n_0}}]\chi_{(G'_{n_0})^c}(x) = f_1 + f_2(x) + f_3(x)$. Since f_1 is a constant, $T(f_1) = 0$ and hence exists a.e.. Using the fact T is bounded on $L_{2,\alpha}$, we know

$$\int_{G_{n_0}'} |Tf_2(x)| \nu_{\alpha}(x) \mathrm{d}\mu(x) \leq \mu_{\alpha}(G_{n_0}')^{\frac{1}{2}} \|Tf_2\|_{2,\alpha} \leq C \mu_{\alpha}(G_{n_0}')^{\frac{1}{2}} \|f_2\|_{2,\alpha} \leq C \mu_{\alpha}(G_{n_0}') \|f\|_{\infty}.$$

Thus Tf_2 exists a.e.. There is a point $y_0 \in G'_{n_0}$ such that $Tf_3(y_0)$ exists,

$$Tf_3(y_0) = Tf(y_0) - Tf_2(y_0).$$

For $x \in G'_{n_0}$,

$$\begin{split} &|Tf_{3}(x)-Tf_{3}(y_{0})|\\ &\leq \int |k(x-z)-k(y_{0}-z)||f_{3}(z)|\mathrm{d}\mu(z)\\ &= \int_{G\backslash G'_{n_{0}}} |k(x-z)-k(y_{0}-z)||f(z)-f_{1}|\mathrm{d}\mu(z)\\ &\leq (\int_{G\backslash G'_{n_{0}}} |k(x-z)-k(y_{0}-z)|^{r}\mathrm{d}\mu(z))^{\frac{1}{r}} (\int_{G\backslash G'_{n_{0}}} |f(z)-f_{1}|^{r'}\mathrm{d}\mu(z))^{\frac{1}{r'}}\\ &= \sum_{n=-\infty}^{n_{0}-1} (\int_{G'_{n}\backslash G'_{n+1}} |k(x-z)-k(y_{0}-z)|^{r}\mathrm{d}\mu(z))^{\frac{1}{r}} (\int_{G'_{n}\backslash G'_{n+1}} |f(z)-f_{1}|^{r'}\mathrm{d}\mu(z))^{\frac{1}{r'}}\\ &\leq \sum_{n=-\infty}^{n_{0}-1} m_{n}^{\epsilon+\frac{1}{r'}} m_{n_{0}}^{-\epsilon} ||f||_{\infty} \mu(G'_{n-1} \setminus G'_{n})^{\frac{1}{r'}}\\ &\leq C||f||_{\infty} \sum_{n=-\infty}^{n_{0}} m_{n}^{\epsilon} m_{n_{0}}^{-\epsilon} \leq C||f||_{\infty}. \end{split}$$

So $Tf \in BMO(\alpha)$, and $||Tf||_{BMO(\alpha)} \leq C||f||_{\infty}$. \square

Theorem 2.1 can be extended to the case $f \in BMO(\alpha)$, if we require additional smoothness of the kernel k. We say k satisfies the C_r^+ condition if we replace condition (5) with

$$\sup_{y \in G_l} \left(\int_{G_n \setminus G_{n+1}} |k(x-y) - k(x)|^r d\mu(x) \right)^{\frac{1}{r}} \le C(l-n)^{-1} m_n^{\epsilon + \frac{1}{r'}} m_l^{-\epsilon} (1 < r < \infty). \tag{7}$$

Theorem 2.2 If k satisfies C_r^+ for some r, $1 \le r < \infty$, and $f \in BMO(\alpha)$, $-1 < \alpha < 0$. Then either Tf exists only on a set of measure zero or $Tf \in BMO(\alpha)$ with $||Tf||_{BMO(\alpha)} \le C||f||_{BMO(\alpha)}$ where C is independent of f.

Before we show Theorem 2.2, we first introduce two basic lemmas.

Lemma 2.3^[3] Let $\alpha > -1, x \in G$ and $k \in \mathbb{Z}$.

- (a) $\mu_{\alpha}(G_k) \sim m_k^{-(1+\alpha)}$;
- (b) $\mu_{\alpha}(x+G_k) \leq C\mu_{\alpha}(x+G_{k+1});$
- (c) $\mu_{\alpha}(G_k) \leq C\mu_{\alpha}(G_k \setminus G_{k+1});$
- (d) If $\alpha \leq 0$, $(G'_k)^* = G'_k \setminus \{0\}$, then $\mu_{\alpha}(G'_k) \leq C m_k^{-1} \inf\{v_{\alpha}(y) : y \in (G'_k)^*\}$.

Lemma 2.4 Let $1 \leq p < \infty$. There is a constant C such that if $f \in BMO(\alpha), x_0 \in G, n \geq 1$, then

$$\int_{G_{j-n}'} |f(y)-f_{G_j'}|^p \mathrm{d}\mu_{\alpha}(y) \leq C^p n^p \mu_{\alpha}(G_{j-n}') \|f\|_{\mathrm{BMO}(\alpha)}^p, \forall j \in Z,$$

where $G'_j = G_j + x_0$.

Proof First consider the case n = 1. We have

$$\begin{split} &\{\int_{G'_{j-1}} |f(y) - f_{G'_{j}}|^{p} \mathrm{d}\mu_{\alpha}(y)\}^{\frac{1}{p}} \\ &\leq \{\int_{G'_{j-1}} |f(y) - f_{G'_{j-1}}|^{p} \mathrm{d}\mu_{\alpha}(y)\}^{\frac{1}{p}} + \mu_{\alpha}(G'_{j-1})^{\frac{1}{p}} |f_{G'_{j-1}} - f_{G'_{j}}| \\ &\leq C \mu_{\alpha}(G'_{j-1})^{\frac{1}{p}} \|f\|_{\mathrm{BMO}(\alpha)} + \mu_{\alpha}(G'_{j-1})^{\frac{1}{p}} |f_{G'_{j-1}} - f_{G'_{j}}| \leq C \mu_{\alpha}(G'_{j-1})^{\frac{1}{p}} \|f\|_{\mathrm{BMO}(\alpha)}. \end{split}$$

We now proceed by induction. Suppose

$$\int_{G_{j-n}'} |f(y) - f_{G_j'}|^p \mathrm{d}\mu_{\alpha}(y) \leq C n^p \mu_{\alpha}(G_{j-n}') \|f\|_{\mathrm{BMO}(\alpha)}^p.$$

For G'_{j-n-1} ,

$$\begin{split} &(\int_{G'_{j-n-1}} |f(y) - f_{G'_{j}}|^{p} \mathrm{d}\mu_{\alpha}(y))^{\frac{1}{p}} \\ &\leq (\int_{G'_{j-n-1}} |f(y) - f_{G'_{j-n}}|^{p} \mathrm{d}\mu_{\alpha}(y))^{\frac{1}{p}} + \mu_{\alpha}(G'_{j-n-1})^{\frac{1}{p}} |f_{G'_{j-n}} - f_{G'_{j}}| \\ &\leq C \mu_{\alpha}(G'_{j-n-1})^{\frac{1}{p}} ||f||_{\mathrm{BMO}(\alpha)} + C n ||f||_{\mathrm{BMO}(\alpha)} \mu_{\alpha}(G'_{j-n-1})^{\frac{1}{p}} \\ &= C (n+1) \mu_{\alpha}(G'_{j-n-1})^{\frac{1}{p}} ||f||_{\mathrm{BMO}(\alpha)}. \quad \Box \end{split}$$

Proof of Theorem 2.2 Let $E = \{x \in G : Tf(x) \text{ exists }\}$. Assume E has positive

measure. Using the same notation as in the proof of Theorem 2.1, we write $f(x) = f_1 + f_2(x) + f_3(x)$. Similar to the proof of Theorem 2.1, we have

$$egin{aligned} &\int_{G_{n_0}'} |Tf_2(x)| \mathrm{d}\mu_lpha(x) \leq \mu_lpha(G_{n_0}')^{rac{1}{2}} \|Tf_2\|_{2,lpha} \leq C \mu_lpha(G_{n_0}')^{rac{1}{2}} \|f_2\|_{2,lpha} \ &= C \mu_lpha(G_{n_0}')^{rac{1}{2}} \{\int_{G_{n_0}'} |f(x) - f_{G_{n_0}}|^2 \mathrm{d}\mu_lpha(x)\}^{rac{1}{2}} \ &\leq C \mu_lpha(G_{n_0}') \|f\|_{\mathrm{BMO}(lpha)}. \end{aligned}$$

For the estimate $|Tf_3(x) - Tf_3(y_0)|$, we use the fact $k \in C_r^+$. Then we have

$$\begin{split} &|Tf_{3}(x)-Tf_{3}(y_{0})|\\ &\leq \sum_{n=-\infty}^{n_{0}-1}\{\int_{G'_{n}\backslash G'_{n+1}}|k(x-z)-k(y_{0}-z)|^{r}\mathrm{d}\mu(z)\}^{\frac{1}{r}}\{\int_{G'_{n}\backslash G'_{n+1}}|f(z)-f_{1}|^{r'}\mathrm{d}\mu(z)\}^{\frac{1}{r'}}\\ &\leq C\sum_{n=-\infty}^{n_{0}-1}(n_{0}-n)^{-1}m_{n}^{\varepsilon+\frac{1}{r'}}m_{n_{0}}^{-\varepsilon}\{\int_{G'_{n}}|f(z)-f_{G'_{n_{0}}}|^{r'}\mathrm{d}\mu(z)\}^{\frac{1}{r'}}\\ &\leq C\sum_{n=-\infty}^{n_{0}-1}(n_{0}-n)^{-1}m_{n}^{\varepsilon+\frac{1}{r'}}m_{n_{0}}^{-\varepsilon}\{\int_{G'_{n}}|f(z)-f_{G'_{n_{0}}}|^{r'}v_{\alpha}(z)\mathrm{d}\mu(z)m_{n}^{-1}(\mu_{\alpha}(G'_{n}))^{-1}\}^{\frac{1}{r'}}\\ &\leq \sum_{n=-\infty}^{n_{0}-1}(n_{0}-n)^{-1}m_{n}^{\varepsilon}m_{n_{0}}^{-\varepsilon}(n_{0}-n)||f||_{\mathrm{BMO}(\alpha)}\\ &\leq C||f||_{\mathrm{BMO}(\alpha)}. \end{split}$$

So

$$\frac{1}{\mu_{\alpha}(G_{n_0}')}\int_{G_{n_0}'}|Tf(x)-Tf_3(y_0)|\mathrm{d}\mu_{\alpha}(x)\leq C\|f\|_{\mathrm{BMO}(\alpha)},$$

i.e.,

$$||Tf||_{\mathrm{BMO}(\alpha)} \leq C||f||_{\mathrm{BMO}(\alpha)}. \quad \Box$$

Corollary 2.5 Let ϕ be a bounded radial function on Γ . For each integer n, let $\phi_n = \phi_{\chi_{\Gamma_n} \setminus \Gamma_{-n}}$, and let F_n be the function on G such that $\hat{F}_n = \phi_n$. Then

$$||F_n * f||_{\mathrm{BMO}(\alpha)} \le C||f||_{\mathrm{BMO}(\alpha)},$$

where C is independent of f.

References:

- [1] TAIBLESON M. T. Fourier Analysis on Local Fields [M]. Math. Notes, Princeton University Press, Princeton, 1975.
- [2] EDWARDS R E and GANDRY G I. Littlewood-Paley Operator and Multiplier Theory [M]. Springer-Verlag, Berlin, 1977.

- [3] ONNEWEER C W. Multiliers on weighted L_p spaces over certain totally disconnected groups [J]. Trans. Amer. Math. Soc., 1985, 288: 347-362.
- [4] DALY J E and KURTZ D S. BMO and singular integrals over local fields [J]. J. Austral. Math. Soc. (Series A), 1993, 54: 321-333.
- [5] KURTZ D S. Littlewood-Paley operators on BMO [J]. Proc. Amer. Math. Soc., 1987, 99: 657-666.

一类全不连通群上的 BMO 和奇异积分算子

朱月萍1, 郑维行2

- (1. 南通师范学院数学系, 226007;
- 2. 南京大学数学系, 210093)

摘 要:本文主要讨论了定义在局部紧的全不连通群 G 上的一类卷积算子在加权 $L^{\infty}(G)$ 和 $BMO(\alpha)$ 空间的性态. 证明了如果卷积算子的核满足适当的条件, 则算子是 $L^{\infty}(G)$ 到 $BMO(\alpha)$ 有界的或是 $BMO(\alpha)$ 到 $BMO(\alpha)$ 有界的.