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Abstract: Let X be a real Banach space, K a nonempty convex subset of X such that

K+ KCK. Let T: K — K be a Lipschitzian and ¢-hemicontractive mapping with a

Lipschitzian constant L > 1. Let {«,}32, and {8,}%, be two real sequences in [0,1]
0

satisfying: (i) an — 0, B — 0 as n — o0; (ii) Y. an = co. Assume that {u,}3, and
n=0

{vn}a%o are two sequences in K satisfying [[un|| = o(cn), v, — 0 as n — oco. For an

arbitrary zo € K define a sequence {z,}%, in K by

(IS) To41 = (1 - ('!")IL‘,, +anTyn + Uy,
Yn = (1 - Bn):’;n +ﬁnT$n + vy, 2 0.

If {Tyn } is bounded, then the sequence {z,} converges strongly to the unique fixed point
of T.

A related result deals with iterative solution of nonlinear equations with ¢—strongly
quasi-accretive mappings by the Ishikawa iteration with errors in an arbitrary Banach
space.
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1. Introduction and Preliminaries

Let X be a real Banach space with norm || - || and a dual X*. The normalized duality
mapping J : X — 2% is defined by

Je={z" e X" :<zg,2* >= ||:1r:|]2 = ||:c*”2},

where (-,-) denotes the generalized duality pairing. It is well known that if X* is strictly
convex, then J is single-valued and such that J(tz) = tJz for allt > 0,2 € X. If X*
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is uniformly convex, then J is uniformly continuous on any bounded subsets of X (cf.
Browder(!, Barbu®!).

An operator T with domain D(T) and range R(T') in X is said to be accretive if for
every z,y € D(T), there exists a j € J(z — y) such that

(Tz —Ty,j) > 0. (1)

The concept of accretive operators was introduced independently by Browder!!) and Katol?
in 1967. A fundamental and important result, due to Browder, in the theory of accretive
operators states that the IVP

du + Tu =0, u(0) = uo (2)
dt

is solvable if T is a locally Lipschitzian and accretive operator on X. An accretive operator
T is strongly accretive if there exists a positive constant k such that the inequality (1)
holds with 0 replaced by k||z — y||2>. Without loss of generality, we may assume that
k € (0,1). These operators have been studied by various authors (cf. [4,5,6]). Deimling(¥
proved that if X is a Banach space, and T : X — X is continuous and strongly accretive,
then R(T) = X. Hence, for any f € X, the equation Tz = f has at least one solution in
X. Since T is strongly accretive, the solution must be unique.

A class of mappings that are more general than strongly accretive ones is the class of
¢—strongly quasi—accretive ones. A mapping T is said to be ¢—strongly quasi—accretive, if
the kernel of T, N(T') = {z € D(T) : Tz = 0} # 0, and there exists an increaing function
¢ :{0,00) — [0,00) with ¢(0) = 0 such that

(Tz —Ty,j(z - y)) 2 é(llz - ylDllz - yll. (3)

A class of mappings closely related to ¢—strongly quasi—accretive mappings is so called the
kind of ¢-hemicontractions. A mapping T is called ¢-hemicontractive, if (I — T') is ¢—
strongly quasi—accretive, where I : X — X denotes the identity mapping. Such mappings
have been used and studied by several authors (e.g., cf. Xu and Roach®l, Zhou and
Jialt% Osilikel'?]). '
Recently, Osilike proved that both the Mann iteration method and the Ishikawa itera-

tion methods are applied to approximate the fixed points of ¢—hemicontractive mappings
in a real g—uniformly smooth Banach space.

Theorem A Let ¢ > 1, and let E be a real q—uniformly smooth Banach space. Let
T : X — X be a Lipschitzian ¢-strongly accretive operator. Suppose that the equation
Tz = f has a solution for any given f € X. Let {a,}2, and {83,}°2, be real sequences
satisfying

(i) 0<a,<1,n>0;

(i) 0< fn<al™l,n>0;,

(iii) Y olo an(l — 0, )07t = oo

(iv) > ,al < co.

Define S : X - X by Sz = f+ & ~ Tz, foreachz € X.
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Then the sequence {z,}>, generated from any zo € X by

Yo = (1-Pn)zn+ BnSza,n >0,
Znt1 = (1= an)zn+ anSyn,n >0

converges strongly to the unique solution of the equation Tz = f.

Theorem B Let ¢ > 1, and let E be a real g—uniformly smooth Banach space. Let K be a
nonempty closed convex subset of E and T : K — K be a Lipschitzian ¢-hemicontractive
operator. Let {an}2  and {8,}2, be real sequences satisfying

(i) 0<a,<1,n>0;

(i) 0< Bn<al™n>0;,

(i) Y2 an(l - an) ! = oo;

(iv) X oloal < co. Then the sequence {z,}3° , generated from any zo € K by

Yn = (1 - ﬂn)zn + ,BnTznan >0,

Zpy1 = (- an)zn + anTyn,n >0

converges strongly to the fixed point of T.

Indeed, Theorem A of Osilike(!?) can be deduced from the above Theorem B. To see this,
assume that all conditions are satisfied in the Theorem 1 of Osilike!?) let Sz = f+(I-T)z,
then S : E — E is Lipschitzian ¢-hemicontractive. By Theorem B we obtain the desired
conclusion.

On the other hand, Theorem 13 of Chidumel”) proved that the Ishikawa iteration
process converges strongly to the unique fixed point of T when F is any real smooth Banach
space and T is a Lipschitzian strongly pseudocontractive mapping from a nonempty closed
convex subset K of E to itself.

One question arises naturally: Is it possiible to extend Theorems A,B of Osilike[!?] to
the case where X is a real Banach spaces without any smoothness?

In this paper we shall solve this question in the more general setting. To do so, we
need the following known result.

Lemma 1.1 Let X be a real Banach space. Then for each z,y € X, j(z+y) € J(z'+y),

Iz +yll* < ll=li* + 2(y, (2 + ).
Proof It follows from the fact that Jz = 8¢(z), where ¢(z) = 3||z||*>. O
2. Main Results
Now we prove the main results of this paper.

Theorem 2.1 Let X be a real Banach space, K a nonempty convex subset of X such
that K4+ K C K. Let T : K — K be a Lipschitzian and ¢-hemicontractive mapping with
a Lipschitzian constant L > 1. Let {a,}2, and {8,}°%, be two real sequences in [0,1]
satisfying:

(i) an, — 0, B, » 0 asn — oo;
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(e 0)
(i) Y, a, = co.
n=0
Assume that {u,}>, and {v,}3, are two sequences in K satisfying ||un|| = o(an),
v, —» 0 asn — oo.
For an arbitrary zq € K define a sequence {z,}2 in K by

(IS) Int1 = (1 - an)zn + anTyn + un
Y ¥n = (1= Bn)n + BuT2zn + va, n > 0.

If {Ty.} is bounded, then the sequence{z,} converges strongly to the unique fixed
point of T'.

Proof Since K+ K C K, and K is convex, we see that the sequence {z,} is well-defined.
By the defination of T, we know that T has a unique fixed point in K. Let g denote
the unique fixed point and L > 1 denote the Lipschitzian constant of T'.
Now we shall show that {z,} is bounded. In fact, since ||u,|| = o(a,), we have
lunll = €nctn, where €, — 0 as n — co. Let d = sup{||Tyn — q|| + €x} + |20 — ¢||. Then,
n>0

by a simple induction, we can show ||z,, — ¢|| < d, for all n > 0.
Since T is ¢—hemicontractive, we have
(Tz - Ty,j(z —y)) < llz - ylI* - ¢(le — yIDllz - yll, (4)

for each z,y € K.
By using Lemma 1.1 and (IS); we get

lensr = alI> = (1= an)(2n ~ @) + an(Tyn = Tq) + un|’
< (1 - an)(@n = @) + an(Tyn — TOI* + 2(tn, j(2n41 = 9))
< 0 - an)(zn ~ @) + an(Tyn — T + 2d]|u]. (5)

Again using Lemma 1.1 and (IS);, we obtain that
(1 = an)(2n — @) + an(Tyn — Tq)|I?
< (1 - an)’llen — gll* + 200(Tyn — Tq, j(2nt1 — ¢ — un))
<(@1- an)zuzn - qllz + 200 (Tyn — T(Zn41 = Un), J(Znt1 — un — ) +
20, (T (2041 — tn) — T¢, 5 (Trg1 — Un — q)) ’
< (1= an)?llen — all? + 20nLllyn — 2ns1 — wnllllenss — un — all +
20af|Znt1 — Un — 9“2 = 2and(||2ns1 — Un — @l)l|Zns1 — un — 4l
<(1- an)2||3n - q||2 + 20, L{[an(1 + LZ) + Bn(1 4 LD)]llzn — gl + (anL + 1)[|vnl|} %
(L?||zn — gll + anLllvall) + 2anll2nt1 = un — qlf* ~
20n¢([|zn+1 — un — gl )l|2as1 — un — 4|
< (1= an)?llzn — g|I® + 200 L{{an(l + L?) + Bu(1 + L)]d + (anL + 1)[lvall} x
(L%d + anLl|onll) + 2an/[2ns1 — un — qlI* -
20, ¢(||2nt1 — un — glllZns1 — un — 4|
< (1= an)’[l2n — glI” + 2anTa + 200|204 — un — gl” ~
2a0(l|2nt1 — un — gl)l|Zn+1 — un — 4l (6)
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where 7, = L{[an(1 + L?) + B L)d + (an L + 1)||va||}(L%d + e L||v,|])-
It follows from (6) that

1-a,)? 2a,T,
et —qp < QZem) e 20mTn
e == qlf < gl o - g 4 222
2a
1_—21;:¢(||3n+1 = tn = g)l|2ns1 — un — g
2a d’a
< P | R ket LY aiieiid —
< o=l + e (522 4 )
2a,
T:—é"a—n¢(||‘cn+1 = tn = g[)l|Znt1 — ua — || (7)
Substituting (7) into (5) yields
1— ap)? 2a,T,
—qll? < (__”__ g2y '
|Izn+1 q” — 1 . 2an “zn qH + 1 — 2an
20,
o dllents — o — a2~ ] + 2l
2a da
< g2 £ n _
< llon—al + 2 (2 )
2a,
1- 2a (llzn+1 — un — gllEns1 — un — gll + 2d[|ull. (8)

Now we consider two possible cases.
Case (1). ir;f('){”a:nﬂ —u, —¢q||} =86 >0.

Since dzantl— 21, + 2de,(1 — 2a,,) — 0 as n — 0o, we see that there exists some fixed
N such that

d2ay, + 21, + (2de,)(1 — 2a,) < $(6)8, (9)
foralln > N.
It follows from (8) and (9) that
2a
—aql? < g2y % - n
less = alF < lle — alP + 22— 8(6)6 - T2 0(6)8
< len - g2 = —22_g(6)8.
< llen = alP = T224(6) (10)
(10) leads to
$(8)8 3 an < [lzn = glf* < oo, (11)
n=N

which contradicts the assumption that > .2 ; a,, = 0o. This contradiction shows the case
(1) is impossble.
Case (2). inf {||z+1 — un — ¢q||} = 0.
n>0

— 163 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



In this case, there exists a subsequence {z,,1} such that z,,, 1, — g as j — co. Hence,
Ve > 0, there exists some fixed n; > 0 such that
' 2 N 3
||:cnj+l - 41“ < €, d ay + 2Tn + 2d€n(1 - 2aﬂ) < ¢(§)§’ ||’U,n|| < 5’
for all n > n;.
Now we want show that |[z,;1m — ¢]| <€, for all m > 1.
We first show that [|z,.;12 — g|| < e. If not, assume that ||z, 42 — ¢|| > ¢, then

|

£
lZn;+2 = tn;41 — @l 2 [|2n;42 — @l = |Jtn,;1all > € - 37 3

and hence ¢(|[rn,-+2 = Unj+1 — qil) > $(5)-
By (9) we have

anj+1

€€
l2n;+2 — qlI> < ||2n;41 — ql)® = ¢(§)5 < lzn;+1 — 4lI?,

1-— 2anj+1
a contradition. This contradiction shows (2,12 — ¢|| < e. By using induction, we can
show ||zn,;1m — ¢q|| < €, for all m > 1, which gives to z, — ¢ as n — oo. The proof of
Theorem 2.1 is complete. O

Remark 1 Theorem 2.1 extends Theorem 2 of Osilikel'? to the more general Banach
spaces without making any smoothness assumption and to the more general iteration with

errors. By setting u,, = 0, v, = 0, we can deduce Theorem 2 of Osilike!?!, and Theorems
4-6,13 of Chidumel”.

Remark 2 Theorem 2.1 also holds true when T is a uniformly continuous and ¢-
hemicontractive mapping.

As a corollary of Theorem 2.1, we have following

Theorem 2.2 Let X be a real Banach space. Let T : X — X be a Lipschitzian and
¢—strongly quasi-accretive mapping with a Lipschitzian constant L > 1. Set L; = L + 1.
Let {a,}, {B.} be two real sequences in [0,1] satisfying:

(i) a, =0, B, > 0asn— oo;

(i) Y0loan = co.

Set Se = ¢ — Tz foreachz € X.

Assume that {u,}>2, and {v,}32, are two sequences in X satisfying ||u.|] = o(ay),
and v, —» 0 as n — oo.

For an arbitrary o € X, an iteration sequence {z,} is defined by

(1), 4 21 = (1= an)en + 0nSyn + un,
2 Yn = (1“ﬂn)¢cn+ﬂ,15:cn+vm n > 0.

Suppose, furthermore, that {Sy,} is bounded, then the sequence {z,} converges strongly
to the unique solution of the equation Tz = 0.

Remark 3 Theorem 2.2 extends Theorem 1 of Osilikel!? to the more general Banach
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spaces and the more general iteration with errors. By setting u, = 0, v, = 0, we can

deduce Theorem 1 of Osilikel12],

Remark 4 Theorem 2.2 still holds true when T is a uniformly continuous ¢—strongly
quasi—accretive mapping.
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