Ishikawa Iterative Process with Errors for Lipschitzian and ϕ -Hemicontractive Mappings in Banach Spaces *

ZHOU Hai-yun

(Inst. of Appl. Math & Mech., Ordnance Engineering College, Shijiazhuang 050003)

Abstract: Let X be a real Banach space, K a nonempty convex subset of X such that $K+K\subset K$. Let $T:K\to K$ be a Lipschitzian and ϕ -hemicontractive mapping with a Lipschitzian constant $L\geq 1$. Let $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ be two real sequences in [0,1] satisfying: (i) $\alpha_n\to 0$, $\beta_n\to 0$ as $n\to\infty$; (ii) $\sum\limits_{n=0}^{\infty}\alpha_n=\infty$. Assume that $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$ are two sequences in K satisfying $||u_n||=o(\alpha_n), v_n\to 0$ as $n\to\infty$. For an arbitrary $x_0\in K$ define a sequence $\{x_n\}_{n=0}^{\infty}$ in K by

(IS)
$$\begin{cases} x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n + u_n, \\ y_n = (1 - \beta_n)x_n + \beta_n T x_n + v_n, & n \ge 0. \end{cases}$$

If $\{Ty_n\}$ is bounded, then the sequence $\{x_n\}$ converges strongly to the unique fixed point of T.

A related result deals with iterative solution of nonlinear equations with ϕ -strongly quasi-accretive mappings by the Ishikawa iteration with errors in an arbitrary Banach space.

Key words: Ishikawa iteration with errors; ϕ -strongly quasi-accretive mapping; ϕ -hemicontraction, arbitrary Banach space.

Classification: AMS(1991) 47H17,47H05,47H10/CLC O177.91

Document code: A **Article ID:** 1000-341X(2000)02-0159-07

1. Introduction and Preliminaries

Let X be a real Banach space with norm $\|\cdot\|$ and a dual X^* . The normalized duality mapping $J:X\to 2^{X^*}$ is defined by

$$Jx = \{x^* \in X^* : \langle x, x^* \rangle = ||x||^2 = ||x^*||^2\},$$

where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. It is well known that if X^* is strictly convex, then J is single-valued and such that J(tx) = tJx for all $t \geq 0$, $x \in X$. If X^*

Biography: ZHOU Hai-yun (1957-), male, born in Renqiu city, Hebei province. M.Sc., currently a professor at ordnance Engineering College.

^{*}Received date: 1997-10-10; Revised date: 1999-08-30

is uniformly convex, then J is uniformly continuous on any bounded subsets of X (cf. Browder^[1], Barbu^[3]).

An operator T with domain D(T) and range R(T) in X is said to be accretive if for every $x, y \in D(T)$, there exists a $j \in J(x - y)$ such that

$$\langle Tx - Ty, j \rangle \ge 0. \tag{1}$$

The concept of accretive operators was introduced independently by Browder^[1] and Kato^[2] in 1967. A fundamental and important result, due to Browder, in the theory of accretive operators states that the IVP

$$\frac{\mathrm{d}u}{\mathrm{d}t} + Tu = 0, \ u(0) = u_0 \tag{2}$$

is solvable if T is a locally Lipschitzian and accretive operator on X. An accretive operator T is strongly accretive if there exists a positive constant k such that the inequality (1) holds with 0 replaced by $k||x-y||^2$. Without loss of generality, we may assume that $k \in (0,1)$. These operators have been studied by various authors (cf. [4.5,6]). Deimling [4] proved that if X is a Banach space, and $T: X \to X$ is continuous and strongly accretive, then R(T) = X. Hence, for any $f \in X$, the equation Tx = f has at least one solution in X. Since T is strongly accretive, the solution must be unique.

A class of mappings that are more general than strongly accretive ones is the class of ϕ -strongly quasi-accretive ones. A mapping T is said to be ϕ -strongly quasi-accretive, if the kernel of T, $N(T) = \{x \in D(T) : Tx = 0\} \neq \emptyset$, and there exists an increaing function $\phi:[0,\infty)\to[0,\infty)$ with $\phi(0)=0$ such that

$$\langle Tx - Ty, j(x - y) \rangle \ge \phi(||x - y||)||x - y||. \tag{3}$$

A class of mappings closely related to ϕ -strongly quasi-accretive mappings is so called the kind of ϕ -hemicontractions. A mapping T is called ϕ -hemicontractive, if (I-T) is ϕ strongly quasi-accretive, where $I:X\to X$ denotes the identity mapping. Such mappings have been used and studied by several authors (e.g., cf. Xu and Roach^[13], Zhou and $Jia^{[10]}$, Osilike^[12]).

Recently, Osilike proved that both the Mann iteration method and the Ishikawa iteration methods are applied to approximate the fixed points of ϕ -hemicontractive mappings in a real q-uniformly smooth Banach space.

Theorem A Let q > 1, and let E be a real q-uniformly smooth Banach space. Let $T:X\to X$ be a Lipschitzian ϕ -strongly accretive operator. Suppose that the equation Tx = f has a solution for any given $f \in X$. Let $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ be real sequences satisfying

- (i) $0 < \alpha_n < 1, n \geq 0$;
- (ii) $0 \le \beta_n \le \alpha_n^{q-1}, n \ge 0;$, (iii) $\sum_{n=0}^{\infty} \alpha_n (1 \alpha_n)^{q-1} = \infty;$
- (iv) $\sum_{n=0}^{\infty} \alpha_n^q < \infty$.

Define $S: X \to X$ by Sx = f + x - Tx, for each $x \in X$.

Then the sequence $\{x_n\}_{n=0}^{\infty}$ generated from any $x_0 \in X$ by

$$y_n = (1 - \beta_n)x_n + \beta_n Sx_n, n \ge 0,$$

 $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Sy_n, n > 0$

converges strongly to the unique solution of the equation Tx = f.

Theorem B Let q > 1, and let E be a real q-uniformly smooth Banach space. Let K be a nonempty closed convex subset of E and $T: K \to K$ be a Lipschitzian ϕ -hemicontractive operator. Let $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ be real sequences satisfying

- (i) $0 < \alpha_n < 1, n \geq 0$;
- (ii) $0 \le \beta_n \le \alpha_n^{q-1}, n \ge 0;$
- (iii) $\sum_{n=0}^{\infty} \alpha_n (1-\alpha_n)^{q-1} = \infty;$
- (iv) $\sum_{n=0}^{\infty} \alpha_n^q < \infty$. Then the sequence $\{x_n\}_{n=0}^{\infty}$ generated from any $x_0 \in K$ by

$$y_n = (1 - \beta_n)x_n + \beta_n T x_n, n \ge 0,$$

 $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n, n \ge 0$

converges strongly to the fixed point of T.

Indeed, Theorem A of Osilike^[12] can be deduced from the above Theorem B. To see this, assume that all conditions are satisfied in the Theorem 1 of Osilike^[12], let Sx = f + (I - T)x, then $S: E \to E$ is Lipschitzian ϕ -hemicontractive. By Theorem B we obtain the desired conclusion.

On the other hand, Theorem 13 of Chidume^[7] proved that the Ishikawa iteration process converges strongly to the unique fixed point of T when E is any real smooth Banach space and T is a Lipschitzian strongly pseudocontractive mapping from a nonempty closed convex subset K of E to itself.

One question arises naturally: Is it possible to extend Theorems A,B of Osilike^[12] to the case where X is a real Banach spaces without any smoothness?

In this paper we shall solve this question in the more general setting. To do so, we need the following known result.

Lemma 1.1 Let X be a real Banach space. Then for each $x, y \in X$, $j(x+y) \in J(x+y)$,

$$||x + y||^2 \le ||x||^2 + 2\langle y, j(x + y)\rangle.$$

Proof It follows from the fact that $Jx = \partial \phi(x)$, where $\phi(x) = \frac{1}{2}||x||^2$. \Box

2. Main Results

Now we prove the main results of this paper.

Theorem 2.1 Let X be a real Banach space, K a nonempty convex subset of X such that $K+K\subset K$. Let $T:K\to K$ be a Lipschitzian and ϕ -hemicontractive mapping with a Lipschitzian constant $L\geq 1$. Let $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ be two real sequences in [0,1] satisfying:

(i)
$$\alpha_n \to 0$$
, $\beta_n \to 0$ as $n \to \infty$;

(ii)
$$\sum_{n=0}^{\infty} \alpha_n = \infty.$$

Assume that $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$ are two sequences in K satisfying $||u_n|| = o(\alpha_n)$, $v_n \to 0$ as $n \to \infty$.

For an arbitrary $x_0 \in K$ define a sequence $\{x_n\}_{n=0}^{\infty}$ in K by

$$(\mathrm{IS})_1 \begin{cases} x_{n+1} = (1-\alpha_n)x_n + \alpha_n T y_n + u_n \\ y_n = (1-\beta_n)x_n + \beta_n T x_n + v_n, \ n \geq 0. \end{cases}$$

If $\{Ty_n\}$ is bounded, then the sequence $\{x_n\}$ converges strongly to the unique fixed point of T.

Proof Since $K + K \subset K$, and K is convex, we see that the sequence $\{x_n\}$ is well-defined. By the defination of T, we know that T has a unique fixed point in K. Let q denote

the unique fixed point and L > 1 denote the Lipschitzian constant of T.

Now we shall show that $\{x_n\}$ is bounded. In fact, since $||u_n|| = o(\alpha_n)$, we have $||u_n|| = \epsilon_n \alpha_n$, where $\epsilon_n \to 0$ as $n \to \infty$. Let $d = \sup_{n \ge 0} \{||Ty_n - q|| + \epsilon_n\} + ||x_0 - q||$. Then, by a simple induction, we can show $||x_n - q|| \le d$, for all $n \ge 0$.

Since T is ϕ -hemicontractive, we have

$$\langle Tx - Ty, j(x - y) \rangle \le ||x - y||^2 - \phi(||x - y||)||x - y||,$$
 (4)

for each $x, y \in K$.

By using Lemma 1.1 and (IS)₁ we get

$$||x_{n+1} - q||^{2} = ||(1 - \alpha_{n})(x_{n} - q) + \alpha_{n}(Ty_{n} - Tq) + u_{n}||^{2}$$

$$\leq ||(1 - \alpha_{n})(x_{n} - q) + \alpha_{n}(Ty_{n} - Tq)||^{2} + 2\langle u_{n}, j(x_{n+1} - q)\rangle$$

$$\leq ||(1 - \alpha_{n})(x_{n} - q) + \alpha_{n}(Ty_{n} - Tq)||^{2} + 2d||u_{n}||.$$
(5)

Again using Lemma 1.1 and (IS)₁, we obtain that

$$\begin{aligned} &\|(1-\alpha_{n})(x_{n}-q)+\alpha_{n}(Ty_{n}-Tq)\|^{2} \\ &\leq (1-\alpha_{n})^{2}\|x_{n}-q\|^{2}+2\alpha_{n}\langle Ty_{n}-Tq,j(x_{n+1}-q-u_{n})\rangle \\ &\leq (1-\alpha_{n})^{2}\|x_{n}-q\|^{2}+2\alpha_{n}\langle Ty_{n}-T(x_{n+1}-u_{n}),j(x_{n+1}-u_{n}-q)\rangle + \\ &2\alpha_{n}\langle T(x_{n+1}-u_{n})-Tq,j(x_{n+1}-u_{n}-q)\rangle \\ &\leq (1-\alpha_{n})^{2}\|x_{n}-q\|^{2}+2\alpha_{n}L\|y_{n}-x_{n+1}-u_{n}\|\|x_{n+1}-u_{n}-q\|+ \\ &2\alpha_{n}\|x_{n+1}-u_{n}-q\|^{2}-2\alpha_{n}\phi(\|x_{n+1}-u_{n}-q\|)\|x_{n+1}-u_{n}-q\| \\ &\leq (1-\alpha_{n})^{2}\|x_{n}-q\|^{2}+2\alpha_{n}L\{[\alpha_{n}(1+L^{2})+\beta_{n}(1+L)]\|x_{n}-q\|+(\alpha_{n}L+1)\|v_{n}\|\} \times \\ &(L^{2}\|x_{n}-q\|+\alpha_{n}L\|v_{n}\|)+2\alpha_{n}\|x_{n+1}-u_{n}-q\|^{2}- \\ &2\alpha_{n}\phi(\|x_{n+1}-u_{n}-q\|)\|x_{n+1}-u_{n}-q\| \\ &\leq (1-\alpha_{n})^{2}\|x_{n}-q\|^{2}+2\alpha_{n}L\{[\alpha_{n}(1+L^{2})+\beta_{n}(1+L)]d+(\alpha_{n}L+1)\|v_{n}\|\} \times \\ &(L^{2}d+\alpha_{n}L\|v_{n}\|)+2\alpha_{n}\|x_{n+1}-u_{n}-q\|^{2}- \\ &2\alpha_{n}\phi(\|x_{n+1}-u_{n}-q\|)\|x_{n+1}-u_{n}-q\| \\ &\leq (1-\alpha_{n})^{2}\|x_{n}-q\|^{2}+2\alpha_{n}\tau_{n}+2\alpha_{n}\|x_{n+1}-u_{n}-q\|^{2}- \\ &2\alpha_{n}\phi(\|x_{n+1}-u_{n}-q\|)\|x_{n+1}-u_{n}-q\|, \end{aligned}$$
 (6)

where $\tau_n = L\{[\alpha_n(1+L^2) + \beta_n L]d + (\alpha_n L + 1)||v_n||\}(L^2 d + \alpha_n L||v_n||).$ It follows from (6) that

$$||x_{n+1} - u_n - q||^2 \leq \frac{(1 - \alpha_n)^2}{1 - 2\alpha_n} ||x_n - q||^2 + \frac{2\alpha_n \tau_n}{1 - 2\alpha_n} - \frac{2\alpha_n}{1 - 2\alpha_n} \phi(||x_{n+1} - u_n - q||) ||x_{n+1} - u_n - q||$$

$$\leq ||x_n - q||^2 + \frac{2\alpha_n}{1 - 2\alpha_n} (\frac{d^2 \alpha_n}{2} + \tau_n) - \frac{2\alpha_n}{1 - 2\alpha_n} \phi(||x_{n+1} - u_n - q||) ||x_{n+1} - u_n - q||.$$
(7)

Substituting (7) into (5) yields

$$||x_{n+1} - q||^{2} \leq \frac{(1 - \alpha_{n})^{2}}{1 - 2\alpha_{n}} ||x_{n} - q||^{2} + \frac{2\alpha_{n}\tau_{n}}{1 - 2\alpha_{n}} - \frac{2\alpha_{n}}{1 - 2\alpha_{n}} \phi(||x_{n+1} - u_{n} - q||) ||x_{n+1} - u_{n} - q|| + 2d||u_{n}||$$

$$\leq ||x_{n} - q||^{2} + \frac{2\alpha_{n}}{1 - 2\alpha_{n}} (\frac{d^{2}\alpha_{n}}{2} + \tau_{n}) - \frac{2\alpha_{n}}{1 - 2\alpha_{n}} \phi(||x_{n+1} - u_{n} - q||) ||x_{n+1} - u_{n} - q|| + 2d||u_{n}||.$$
(8)

Now we consider two possible cases.

Case (1). $\inf_{n>0} \{ ||x_{n+1} - u_n - q|| \} = \delta > 0.$

Since $d^2\alpha_n + 2\tau_n + 2d\epsilon_n(1-2\alpha_n) \to 0$ as $n \to \infty$, we see that there exists some fixed N such that

$$d^2\alpha_n + 2\tau_n + (2d\epsilon_n)(1 - 2\alpha_n) < \phi(\delta)\delta, \tag{9}$$

for all $n \geq N$.

It follows from (8) and (9) that

$$||x_{n+1} - q||^2 \leq ||x_n - q||^2 + \frac{\alpha_n}{1 - 2\alpha_n} \phi(\delta)\delta - \frac{2\alpha_n}{1 - 2\alpha_n} \phi(\delta)\delta$$

$$\leq ||x_n - q||^2 - \frac{\alpha_n}{1 - 2\alpha_n} \phi(\delta)\delta. \tag{10}$$

(10) leads to

$$\phi(\delta)\delta\sum_{n=N}^{\infty}\alpha_n<\|x_N-q\|^2<\infty, \tag{11}$$

which contradicts the assumption that $\sum_{n=0}^{\infty} \alpha_n = \infty$. This contradiction shows the case (1) is impossible.

Case (2).
$$\inf_{n>0} \{ ||x_{n+1} - u_n - q|| \} = 0.$$

In this case, there exists a subsequence $\{x_{n_j+1}\}$ such that $x_{n_j+1} \to q$ as $j \to \infty$. Hence, $\forall \epsilon > 0$, there exists some fixed $n_j \geq 0$ such that

$$\|x_{n_j+1}-q\|<\epsilon,\ d^2\alpha_n+2\tau_n+2d\epsilon_n(1-2\alpha_n)<\phi(\frac{\varepsilon}{2})\frac{\varepsilon}{2},\ \|u_n\|<\frac{\varepsilon}{2},$$

for all $n \geq n_i$.

Now we want show that $||x_{n_j+m}-q|| < \varepsilon$, for all $m \ge 1$.

We first show that $||x_{n_j+2}-q|| < \varepsilon$. If not, assume that $||x_{n_j+2}-q|| \ge \varepsilon$, then

$$||x_{n_j+2}-u_{n_j+1}-q|| \geq ||x_{n_j+2}-q|| - ||u_{n_j+1}|| \geq \varepsilon - \frac{\varepsilon}{2} = \frac{\varepsilon}{2},$$

and hence $\phi(||x_{n_j+2}-u_{n_j+1}-q||) \geq \phi(\frac{\epsilon}{2}).$

By (9) we have

$$\|x_{n_j+2}-q\|^2 \leq \|x_{n_j+1}-q\|^2 - rac{lpha_{n_j+1}}{1-2lpha_{n_j+1}}\phi(rac{arepsilon}{2})rac{arepsilon}{2} < \|x_{n_j+1}-q\|^2,$$

a contradition. This contradiction shows $||x_{n_j+2}-q|| < \epsilon$. By using induction, we can show $||x_{n_j+m}-q|| < \epsilon$, for all $m \ge 1$, which gives to $x_n \to q$ as $n \to \infty$. The proof of Theorem 2.1 is complete. \square

Remark 1 Theorem 2.1 extends Theorem 2 of Osilike^[12] to the more general Banach spaces without making any smoothness assumption and to the more general iteration with errors. By setting $u_n \equiv 0$, $v_n \equiv 0$, we can deduce Theorem 2 of Osilike^[12], and Theorems 4-6,13 of Chidume^[7].

Remark 2 Theorem 2.1 also holds true when T is a uniformly continuous and ϕ -hemicontractive mapping.

As a corollary of Theorem 2.1, we have following

Theorem 2.2 Let X be a real Banach space. Let $T: X \to X$ be a Lipschitzian and ϕ -strongly quasi-accretive mapping with a Lipschitzian constant $L \ge 1$. Set $L_1 = L + 1$. Let $\{\alpha_n\}, \{\beta_n\}$ be two real sequences in [0,1] satisfying:

- (i) $\alpha_n \to 0$, $\beta_n \to 0$ as $n \to \infty$;
- (ii) $\sum_{n=0}^{\infty} \alpha_n = \infty$.

Set Sx = x - Tx for each $x \in X$.

Assume that $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$ are two sequences in X satisfying $||u_n|| = o(\alpha_n)$, and $v_n \to 0$ as $n \to \infty$.

For an arbitrary $x_0 \in X$, an iteration sequence $\{x_n\}$ is defined by

$$(\mathrm{IS})_2 \; \left\{ egin{array}{l} x_{n+1} = (1-lpha_n)x_n + lpha_n Sy_n + u_n, \ y_n = (1-eta_n)x_n + eta_n Sx_n + v_n, \, n \geq 0. \end{array}
ight.$$

Suppose, furthermore, that $\{Sy_n\}$ is bounded, then the sequence $\{x_n\}$ converges strongly to the unique solution of the equation Tx = 0.

Remark 3 Theorem 2.2 extends Theorem 1 of Osilike^[12] to the more general Banach

spaces and the more general iteration with errors. By setting $u_n \equiv 0$, $v_n \equiv 0$, we can deduce Theorem 1 of Osilike^[12].

Remark 4 Theorem 2.2 still holds true when T is a uniformly continuous ϕ -strongly quasi-accretive mapping.

References:

- [1] BROWDER F E. Nonlinear operators and nonlinear equations of evolution in Banach spaces [J], Proc. Sympos. Pure. Math., 1976, 18.
- [2] KATO T. Nonlinear semigroups and evolution equations [J]. J. Math. Soc. Japan, 1976, 18/19: 508-520.
- [3] BARBU V. Nonlinear Semigroups and Differential Equations in Banach Spaces [M]. Noordhoff Int. Publ., Leyden, The Netherlands, 1976.
- [4] DEIMLING K. Nonlinear Functional Analysis [M]. Springer-Verlag, New York/Berlin, 1985.
- [5] DEIMLING K. Zeros of accretive operators [J]. Manuscripta Math., 1974, 13: 365-374.
- [6] CHIDUME C E. Iterative solution of nonlinear equations with strongly accretive operators [J]. J. Math. Anal. Appl., 1995, 192: 502-518.
- [7] CHIDUME C E. Iterative solutions of nonlinear equations in smooth Banach spaces [J]. Nonl. Anal., 1996, 26: 1823–1834.
- [8] DENG L and DING X P. Iterative approximation of Lipschitz strictly pseudocontractive mappings in uniformly smooth Banach spaces [J]. Nonlinear Anal., 1995, 24: 981-987.
- [9] ZHOU H Y and JIA Y T. Approximation of fixed points of strongly pseudocontractive maps without Lipschitz assumption [J]. Proc. Amer. Math. Soc., 1997, 125: 1705-1709.
- [10] ZHOU H Y and JIA Y T. Approximating the zeros of accretive operators by the Ishikawa iteration process [J]. Abtr. Appl. Anal., 1996, 1(2): 153-167.
- [11] LIU L S. Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach spaces [J]. J. Math. Anal. Appl., 1995, 194: 114-125.
- OSILIKE M O. Iterative solution of nonlinear equations of the Φ-strongly accretive type [J].
 J. Math. Anal. Appl., 1996, 200: 259-271.
- [13] XU Z B and ROACH G F. A necessary and sufficient condition for convergence of steepest descent approximation to accretive operator equations [J]. J. Math. Anal. Appl., 1991, 167: 189-210.

Banach 空间中关于 Lipschitz ϕ - 半压缩映象的带误差项的 Ishikawa 迭代过程

周海云

(军械工程学院应用数学与力学研究所,石家庄 050003)

摘 要: 本文在任意 Banach 空间中研究了 Lipschitz ϕ - 半压缩映象与 ϕ - 强拟增生映象的 带误差项的 Ishikawa 迭代过程,使用新的分析技巧建立了几个强收敛定理.