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Abstract: For a given quadric polynomial p(t), the necessary and sufficient conditions

are obtained for operator partial matrices of the form (’}, ,,C) to be completed to an

operator T such that p(T) = 0. Moreover, all such possible completions, if exist, are
presented parametrically.
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1. Introduction

Let H and K be complex Hilbert spaces. Let B(H) (resp., B(K, H)) be the Banach
space of all bounded linear operators acting on H (resp., from K into H). Motivated by
the commutant lifting theory, interpolation theory and control theory, there is recently
a growing interest in the study of the completion problem of operator partial matrices.
Many deep results have been obtained on the completion of operator partial matrices to
projections, contractions, positive operators and so on ( see, e.g., [1], (5], [7], [8] and the
references therein ). The following open problem was raised by P. Rosenthal [1].

Problem R When does (4 ) (resp., (4 5)) have an algebraic completion ? And in
particular, is the nilpotent completion problem solvable for (4, 70) (resp., (‘;1 g))?

Recall that an operator T is algebraic if there is a polynomial p(t) such that p(T) =
0, and T is nilpotent if there is a positive integer k such that 7% = 0. For a given quadric
polynomial p(t), we say that an operator partial matrix has a quadric-p(t)-completion
if it has a completion T such that p(T) = 0. We say that an operator partial matrix
has a quadric completion if it has a quadric-p(t)-completion for some quadric polynomial
p(t). Obviously, to answer the Problem R, it is natural to start with the quadric com-
pletion problem, that is, the problem that when an operator partial matrix has a quadric

completion.
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For any given quadric polynomial p(t), the purpose of this paper is to find the necessary
and suflicient conditions for (’3 f) to have a quadric-p(t)- completion, and, if exist, give a
characterization of all such completions. The necessary and suflicient conditions are also
found for (“.1, .,C) to have a quadric-p(t)-completion with norm not greater than u > r, =
max{| a | : p(a) = 0}. The similar question for case (’3 g) will be discussed in [2].

Now, we introduce some notations. For a linear manifold M C K, its closure and
orthogonal complement will be denoted by M and M+ respectively, and Px will denote
the projection onto M along M*. For an operator T, denote by kerT, R(T), and LatT
the null space, the range, and the lattice of all invariant subspaces of T, respectively. We
use T |pto denote the restriction of T to M which is a linear mapping from M into H,
and T~! for the closed operator defined by

-1 (T l(kerT)J‘)—lz ifze R(T)v
=1y, if2 € R(T)L.
Recall that R(S) C R(T) if and only if $S* < A*TT* for some positive number A, which
happens if and only if E = T71S is bounded with || E ||[< X ( ref.[4] ).

2. Quadric completion

Let p(t) = t% + at + b be a quadric polynomial. Let A € B(H) and C € B(X,H) be
given. In this section we consider the quadric-p(t)-completion of (A, ,,c)

Lemma 2.1 Let p(t) = (t — a)? be a quadric polynomial and T € B(H) and S € B(K)
be given such that p(T) = 0 and p(S) = 0.

(i) If at least one of H and K is finite dimensional, then the set of all solutions to
equation

SX + XT = 2aX (1)

isthe set {X =G - SW+WT : (S —al)G =0 and G(T — al) = 0, W arbitrary}.

(ii) If both H and K are infinite dimensional, then X is a solution of equation (1) if
and only if X = s — lim,,,(G,, — SW,, + W,,T') for some operator sequences {W,} and
{Gn} with (§ — al)G,, = 0 and G,,(T — al) = 0.

Note: s-lim denotes the limit in the strong operator topology.

Proof Equation (1) is the same as the equation (S — al)X + X(T — al) = 0. Since both
S — al and T — ol are square-zero, by use of lemma 2.4 in [1]. we know the assertions
are true.

Lemma 2.2 Let p(t) = (t — a)(t — B) be a quadric polynomial with a # 8. Let T € B(H)
and S € B(K) be given such that p(T) = 0 and p(S) = 0. Then the set of all solutions to
equation

SX+XT = (a+8)X (2)
is exactly the set {WT — SW : W € B(H,K)}.
Proof Let So = (B—a) Y (S—a)and Ty = (a—B)"HT — ). Then §2 = Sy and T = T,.

— 318 —



Equation (2) becomes SoX — XTy = 0. So, by lemma 2.1 of [6], X is a solution to (2) if
and only if there exists an operator W such that

X = Wh-(I-S)W=(a=p)""W(IT-5)-(I-(B-a)(S—a)W
= (a=B)7W(T - B)~ (S -~ W] = (a = B)(WT - SW).
This also means that X is a solution to (2) if and only if X = WT — SW for some W.
Theorem 2.3 Let p(tc) = t* 4 at + b be a quadric polynomial. Let A € B(H) and
C € B(K,H). Then (4 7) has a quadric-p(t)-completion if and only if R( p(4)) C R(C)

and R(AC)C R(C). Furthermore, X and Y are operators such that ()’g g) is a quadric-
p(t)-completion if and only if with respect to the space decomposition K = (kerC)* @ kerC

_ [ —Ci'p(4) _ [ ~Ci'(A+aDC 0
X = ( X, and Y = Yy Yy |’

where C1 = C |y ¢yt , Yoz is any operator on ker(C) such that p(Ys,) = 0, and
(i) in the case that p(t) has a double root «,

Xz =5~ Lim (G + WM A - Yo, W™ — WMo p(4))

n—co

Yo =s— lim (G + WOy — (Yar — al)WSY) — WICTH(A - aD)Cy)

?

for some sequences

{GIH AWV} € B, kerC) and {G)}, (W'} € B((kerC)*  kerC)

with
R(GYY) C ker(Yaz — oI ), R(GY) C ker(Yzz — al)

and

(65" - GReT (4 - al) lgparrime= O

(i) in the case that p(t) has two different roots a and j,

X2 = WzA - ngCl'lp(A) - Y22W2
You = WaCi— WauCr'(A+ al)Cy — Yo Woy

for some (W, Wy ) € B(Hdker(C)t, ker(C)).

Proof (“.1, S’) has a quadric-p(t)-completion if and only if there exist operators X and Y
such that p((y §)) = 0. This holds if and only if p(A) + CX = 0, AC + C(al + Y) = 0,
XA+ (al +Y) = 0and XC + p(Y) = 0.Thus it is trivial to see that if (4$) has a
quadric-p(t)-completion, than R(p(4)) C R(C) and R(AC) C R(C).

Conversely, if the condition holds true, then there are operators X and Y; such that
p(A)+CX = 0and AC+CY; = 0. Let Y = Y; —al, we have AC + C(Y +al) = 0. Notice
that ker(C) € LatY’, so, with respect to the space decomposition K = ker(C) & ker(C)*,
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we may write C = (C; 0), X = (_C‘;(P(A)) and Y = (7 ‘;1,26:‘ GIY(;). Let X, = 0,

Y21 = 0 and take any Yy, such that p(Yzz) = 0, it is easily seen that

-1 -1
Xo = ( Cl OP(A) ) and YO = ( C’1 (A0+ aI)Cl Y(lz )

make (X Y) a quadric-p(t)-completion since p(Y11) + X1C1 = p(—C7(A + al)Cy) —

Now, let’s suppose that (“}, f) has a quadric-p(t)-completion and characterize all pos-
sible such completions parametrically. We will do this by considering two cases. Under
the space decomposition K = ker(C)* @ ker(C),

X1 :Yll Y12
( X ) a ( Y1 Yo )

make ()’é }C;) a quadric-p(t)-completion if and only if X; = —C7'p(4), Y11 = —-C7 (4 +
al)Cy, Y12 = 0, Yy2 is any quadric operator with P(Y3;) = 0 and E = ( X, Yo ) is a

solution to the equation

A Cy

Y22E+E< _Cl_lp(A) —Cl_l(A—{—aI)Cl ) = —ak. (3)

(i) The case that p(¢) has a double root a, i.e., p(t) = (t — ).
Use lemma 2.1, ( Xs Yo ) is a solution to (3) if and only if

(Xz Y21) = s—hm[( ") G(21)> Yzz(Wé") Wz(;t))'*'

(W wip )( C_fli LG )]_
—C7'p(A)  —C7Y(A + aD)Cy
So,
X; = s— lim (G - Yy W(“’+W§"’A—W§?’C;IP(A))
Yor = s— lim (G — Yo, W) + Wiy — WA + al)CY)

—00

for some sequence {( Gg") Gg’ll) )} and {( WZ(") W21 )} with

(Yzz - aI) ( G(zn) G(zq) ) =0

() ) A—al Ch _
( GZ G21 ) ( __Cl—lp(A) —CI—I(A—— CYI)Cl ) =0.
Therefore,
R(ng)) C ker(Y3, — OtI),R(Ggr{)) C ker(Ya — al),
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(n) ~— -
Gy C1 (A = ol) lga=anmie)

is bounded and ng) = G(ZY)C’(A —al) on R(A — al) + R(C).
(ii) The case that p(t) has two different roots o and f.
By lemma 2.2, ( X, Yo ) is a solution to (3) if and only if

A Ch
( X2 Yn ) = ( Wy, Wa ) ('~C{1p(A) —C7Y(A + al)Cy ) —Yzz( W2 Way )

for some W € B(H®ker(C)™*),ker(C)). So,

X = WA - WyCi'p(A) — Yoy W,
Y = W.C; - WZICI_I(A + aI)01 — Y, Wo,.

Corollary 2.4 Assume that p(t), A and C satisfy the hypotheses in Theorem 2.3. Then
(“.1_, 9) has a unique quadric-p(t)-completion if and only if R(p(A)) C R(C),R(AC) C R(C)
and C is injective.

Corollary 2.5 Assume that p(t), A and C satisfy the hypotheses in Theorem 2.3, and

assume that R(C) is closed. Then X and Y make () a quadric-p(t)-completion if and

only if with respect to decomposition K = ker(C)* @ ker(C),

_ [ -citp(a) _( —CiMAa+anCy 0
X = ( X, andY = Yor Yy |-

where Cy = C |ye;(¢)t, Y22 is any operator on ker(C) such that P(Y33) = 0, and
(i) when p(t) has a double root a,

X =s— lim (¥, + 8,4 — Y5,%,) and Y =5 — lim &,C;
n—oo

11— OO

for some sequences {®,} and {¥,.} C B(H, ker(C)) with ker¥,, D R(A — aI) + R(C) and
R(¥,) C ker(Y2; — al);

(ii) when p(t) has two different roots o and 3, X3 = TA — Y251 and Yoy = TCy with
T € B(H,ker(C)) arbitrary.

Proof (i) If p(t) has a double root « and if X and Y are operators so that p((;} }(’;)) =0,
then X and Y must have the forms described in Theorem 2.3. If R(C) is closed, then

Ci! is bounded. So G(Z';)Cl_l(A — oaf) € B(H, ker(C)) which is bounded for each n and
we write Gg") as Gg") = G(zq)Cl_l(A — al)+ ¥, with ker¥?,, DR(A — al)+R(C) and
R(¥,) Cker(Ys —al). Let &, = GO+ W™ — Yy, Wi e - WO (A + al), then
Y =5 -1lim,_,, $,C; and
X, = s— lim[$,+ GO (A - al) + WM A - YWY - WP CTN (A - ad)?]
= s lm [T, + 2,4 - Yard,),
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since p(Y32) = 0 and R(G n)) Cker(Ysz2 — al).
Conversely, if X and Y satisfy the conditions in the corollary, it is clear that p( (; g,)) =
0. In fact, let S;, = ¥, + ,4 — Y22®,, and T,, = $,,C;, we have

(Yaz = aI)Sp + Su(A — o) — T,CT'p(A) = 0,
(ng - aI)Tn + SnCl - TnC;l(A - aI)01 = 0.

Thus ( Sn T, ) is a solution to equation

(Yzz"af)(s T)+(S T)(—é'f_ll?(;) —Cfl(fl_af)cl ):0

for every n and, as the strong limit of {( Sn, T, )}, {( X, Yy )} is, too. Therefore,

(4$) is a quadric-p(t)-completion of 49).

(ii) p(t) has two different roots « and 3.

In this case, if X and Y are operators such that (£ X Y) has a quadric-p(t)-completion,
Theorem 2.3 implies that

_Coip(A) _CTYA+al)CL O
X = 1 dY = 1 '
( X an Yo Yo

with p(Y322) = 0, and

Xy = WoA-WauCrlp(A) — Yoo Wy,
Yo = WiCi— WauCrl(A+ al)Cy — You Wy

for some ( Wy Wy ) € B(Hoker(C)*, ker(C)). Let
T =Wy — WnCrH (A + al) — You Wi C7 2,

since R(C) is closed, T is a bounded operator from ¥ into ker(C). Thus TC; = Y»; and
TA—-Y3T = Xy + p(Yas)War C; ' = X,

Conversely, if X = (TA Y( )) andY = (7 C‘_Tlé,f+a£f‘ %) with Y3, satisfying p(Yz2) =0
and T € B(H, ker(C)) arbitrary. It is clear that p(; g)) = 0 since
(TA - YyT)(A — al) — Tp(A) + (Yas — BI)TA-YT) = 0,
(TA - Y22T)C1 - T(A + aI)01 + (Y22 - ﬂI)TCl =0.

Corollary 2.6 Suppose that one of H and K is finite dimensional. If p(t), A and C
satisfy the hypotheses in Theorem 2.3, then ()“} ]c;) is a quadric-p(t)-completion of (’3, .,C) if
and only if with respect to the space decomposition K = ker(C)* @ ker(C),

—Cy'p(A) -CiY (A+a)C; O
X = 1 dY = 1
( X2 A Yo1 Yo J°
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where C1 = C |ir(c)1, Yoz is any operator on kerC such that p(Y3;) = 0, and
(i) when p(t) has a double root «a,

Xo=9 4+ 3A-Y5® and Yy = C4
for some operator ® and ¥ € B(H,kerC) with
ker¥ D R(A — al) + R(C) and R(¥) C ker(Y22 — al).
(ii) when p(t) has two differen’t roots a and 3,
Xe=TA-Y5T and Yy =TCy
with T € B(H, kerC) arbitrary.
Proof It follows immediately from Corollary 2.4 and Lemma 2.1.

3. Norm bounded Quadric completion

Now we turn to the discussing the question of norm bounded quadric completion of
(“.1, f) The following lemma is taken from [3] which is needed for our purpose.

Lemma 3.1 (‘.? g) has a completion with norm not greater than u > 0 if and only if

AA*+CC* < vl and B*B+C*C < u?I. Those X which have the property || (; %) I< u

are exactly those of the form X = —K*C* L+ u(I - K*K)liZ(I— L*L)% with contractions

L= (u’I - CC*)_%A, K = (u?I - C*C)_%B*, and with Z an arbitrary contraction.
Using this lemma and Theorem 2.3, we can prove the following result.

Theorem 3.2 Assume that p(t), A and C satisfy the hypotheses in Theorem 2.3. Then

(“.1', ?) has a quadric-p(t)-completion ()"} g) with || (; g) I< u for some u > r, = max({|

t |: p(t) = 0} if and only if the following inequalities hold:

AA* £ CC™ <, (4)

p(A)p(4)* < w*CC, (5)

(A + al)CC* (W21 ~ CC*) V(A + al)* < CC™, (6)
(K*C*L - M)(I - L*L)"Y(L*CK — M*) < v*(I - K*K) (7)

with M = C~'p(A) and with contractions

L=(uI-CC*) 14, K=-CYA+al)C(u’I - C*C) 2.
Proof Assume that p(t) has two roots a and 8. If X and Y are operators such that (% $)
has a quadric-p(t)-completion with ||(3% $)|| < u for some u > 7, then p(4) + CX = 0,
(A= al)C+C(Y —BI) =0, X(A = BI) + (Y — al)X = 0 and XC + p(¥) = 0. also by
use of Lemma 3.1, we have AA* + CC* < v?I, Y*Y + C*C < I , and

X =-KC'L+u(l-K"K)1Z(I-L"L)?
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with contractions K = (u] — C*C)~2Y*, L = (u?I - CC*)_%A and with Z an arbitrary
contraction. Hence p(A)p(A)* < w?CC* since || X ||< u. Let C; = C ker(c)t then with
respect to the decomposition K =kerCt @ kerC,

— — Xl _ Y11 0
c=(a 0), X_(Xz) andY_(Y21 Yzz)'

Clear, X; = —C7'p(4) , Y = ~Cr' (A +al)Cy, CC* = C1C5 and CC* = (Ci€1 ) o,
we have L = (u?] — C1C})”2 = L,. Because

|| 4 @ I<w
~Ci'p(4) —CTN(A+anc ) IS
we must have
CiCi+ C{(A+ aI)*(CfI)*C{I(A + al)C; < u?ly, (8)

where Iy = I |, .01 and there exists a contraction Z; : R(I - L{L,) —» R(I — K} K;) such
that

— Cr'p(A) = —K;CiL +u(l - K;Ky)3 Zy(I — LiL1)5. (9)
(8) implies that C}(A + aI)*(C}) 1CTHA + aI)Cy < w21, — C1Cy, thus there is a con-
traction K; such that —C7 (A + al)Cy = K} (u?l; — CfC’l)%. Therefore, we have

(A+a)Ci = —CiKI (w2~ CICh)3,
(A+al)Cy(w*] - C;C1)ICH(A + al)* = C1K}K,C} < CiC],
(A+al)C1Cs (w2 — C,C7) YA+ al)* < CiCr.

So
(A+al)CC*(u*I - CC*) YA+ al)* < CC*

Finally, notice that (9) holds if and only if the operator given by

u(l - K{K,) K{C;L- M,
L*ClKl - Ml* ‘I.L(I - LIL])

is positive, where My = C7'(A - al)? = C{'p(A). Put M = (Ag‘) and notice that

K* = ~C YA+ al)(u?I - CC*)_%C = ( Igl g > ,

it is easy to see that

u(l - KiKy) 0 K:C:L—M,
= 0 ul 0 >0

( ul-K*K) K*C'L-M )
L*CiKy—~ M7y 0 u(I-L:L)

L*CK - M* (I- L")
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and hence (K*C*L — M)(I — L*L)"(L*CK — M*) < v*(I — K*K). So the conditions
are necessary.

Conversely, suppose that the hypotheses hold, let X = —~M,Y = K(u%l — C*C)%.
Obviously, Y*Y 4+ C*C = (u2I - C*C)2 K*K (u?I — C*C)? + C*C < u?I and by (4), there
exists a contraction Z : R(J — L*L) — R(I — K*K) such that

K*C*L+X = K*C*L— M = u(I - K*K)2Z(I - L"L)5.

Hence it follows from Lemma 3.1 that || (¥ %) [|< u. We claim that (£ <) is also a
quadric-p(t)-completion of (4 ). In fact,

p(A)+CX = p(4)-CC7lp(4) =0,
(A-—al)C+C(Y -BI) = (A-al)C + C(K(ull - C*C)? - BI) =0,
X(A-BN)+ (Y —al)X = -C7p(A)(A-BI)+C7HA-BI)p(4) =0,
and
XC+p(Y)=-C'p(A)C + p(-C A+ al)C) =
Thus (% ) is a quadric-p(t)-completion of (4 $) with || (£$) I< w. This finishes the

proof of the theorem.

Remark 3.3 Under the hypotheses of Theorem 3.2, (4 X Y) is a quadric-p(t)-completion

of (., .,) with the norm not greater than u > r, = max{| a | : p(a) = 0} if and only if
with respect to the space decomposition X = kerC+ EB kerC,

_ [ —C1i p(4) _ c YA+al) 0
X—( Xf )andY_( Yoy Yzz)

where C; = C |i;c1, Y22 is any operator with p(Y32) = 0 and the norm not greater than
u in B(kerC), and

(X2 Ya )= u(u?l-YyY5)iZ(u?l - D*D)}
with D = (_Cl_lzsz) —C,"'(i:-al)cl) and Z any contractive solution to the equation

(u?] — Y2,Y53)? Z(w*I — D*D)*(D — BI) + (Y — al)(u?] — Yy, Y3)3 Z(u2I — D*D)% = 0.

Remark 3.4 Let HoC H be a subspace and Ty € B(H,,, H). It is interesting to ask when
To has an extension T' to H such that, for a given quadric polynomial p(t) , p(T) = 0 or
p(T) = 0 and || T ||< u, where u > r, = max{| a | : p(a) = 0}. Let Hy= HL. Then
H = Ho®H, and T can be represented as Ty = (g .:) So the extension problems becomes
the corresponding completion problems. By using Theorem 2.3 and Theorem 3.2, one
can easily get the necessary and the sufficient conditions for Ty to have a quadric-p(t)
-extension or quadric-p(t)-extension with norm not greater than u > r, = max{| a | :

p(a) = 0}.
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