A Kind of Invariant Hankel Operators *

ZHANG Cheng-guo

(Dept. of Math., Central University for Nationalities, Beijing 100081, China)

Abstract: For two kinds of the Möebius invariant subspace $A_l^{\alpha,2}(D)$ and $\overline{A}_l^{\alpha,2}(D)$ of $L^{\alpha,2}(D)$, we define big and small Hankel operators $H_b^{ll'}$ and $h_b^{ll'}$ for the analytic symbol function b(z), and study their boundedness, compactness and Schatten-von Neumann classes S_p -estimates, and hence develope Schatten-von Neumann properties of these operators.

Key words: weighted Bergman space; Casimir operator; invariant Hankel operator; "periodic" paracommutator; Schatten-von Neumann class.

Classification: AMS(1991) 47B35/CLC O174

Document code: A Article ID: 1000-341X(2000)03-0327-04

1. Introduction

Let D be the unit disk in the complex plane equepped with the Lebesgue measure dm(z). The Moebius group G = SU(1,1) consists of all 2×2 complex matrices

$$g=egin{pmatrix} a & b \ c & d \end{pmatrix}, \quad a,b,c,d \in C$$

with $c = \bar{b}, d = \bar{a}, ad - bc = 1$. It acts on D via the transformations

$$z \to gz = g(z) = \frac{az+b}{cz+d}$$
.

Let $d\mu_{\alpha}(z) = \frac{\alpha+1}{\pi}(1-|z|^2)^{\alpha} \mathrm{dm}(z)$ with $\alpha > -1$ and let $L^{\alpha,2}(D)$ be the space consisting of all functions on D square integrable with respect to the measure $d\mu_{\alpha}(z)$. The group SU(1,1) acts on $L^{\alpha,2}(D)$ via $T_g^{\nu}: f(z) \to f[g(z)]\{g'(z)\}^{\nu/2} = f(gz)(cz+d)^{-\nu}$, where $\nu = \alpha + 2$.

Biography: ZHANG Cheng-guo (1945-), male, born in Heishan county, Liaoning province. Currently a professor at central university for Nationalites.

^{*}Received date: 1997-12-16

The Casimir operator becomes

$$\Delta_{
u} := -4(1-|z|^2)^2rac{\partial^2}{\partial z\partialar z} + 4
u z(1-|z|^2)rac{\partial}{\partialar z} -
u^2 + 2.$$

For $\nu = 0$ i.e. for $\alpha = 2$, the operator Δ_0 has only the continuous spectra and the Plancherel formula has been studied by Harish-Chandra, Helgason et al (see [1]). In this case the space $L^{\alpha,2}(D)$ does not contain any non-trivial analytic function. For $\nu > 1$, the space $L^{\alpha,2}(D)$ contains non-trivial analytic functions, the subspace consisting of all analytic functions is called the (weighted) Bergman space and is denoted by $A_l^{\alpha,2}(D)$. In this case J.Peetre, L.Peng and G.Zhang in [2] and H.Liu and L.Peng in [3] gave the eigenvector of the operator Δ_{ν} and established the weighted Planchrel formula. They have find that $L^{\alpha,2}(D)$ has some discrete components (invariant subspaces) A_k , where $k < \frac{\alpha+1}{2}$. In other words, the spactra of Δ_{ν} consist not only of the continuous part, but also of the discrete part and A_k are eigenspaces of Δ_{ν} with the discrete spectra. They also gave the orthonormal basis of A_k with Romanovski polynomials.

2. Main result

Let P_l and \overline{P}_l denote the orthogonal projections of $L^{\alpha,2}(D)$ onto $A_l^{\alpha,2}(D)$ and $\overline{A}_l^{\alpha,2}(D)$ respectively. Now we define two kinds of Hankel operators for the analytic symbol function b(z): $H_b^{ll'} = P_l M_{\bar{b}} P_{l'}$ and $h_b^{ll'} = \overline{P}_l M_{\bar{b}} P_{l'}$. Because all of the subspaces $A_l^{\alpha,2}(D)$ and $\overline{A}_l^{\alpha,2}(D)$ are invariant under the group actions of SU(2,R), both of the two kinds of Hankel operators are invariant, i.e., we have

$$T_g^{
u} H_b^{ll'} = H_{b,g}^{ll'} T_g^{
u}, \text{ and } T_g^{
u} h_b^{ll'} = h_{b,g}^{ll'} T_g^{
u}.$$

In this paper we will give the boundedness, compactness and Schatten-von Neumann classes S_p -estimates of them. For S_p classes and analytic Besov spaces B_p^s , may see [4] of the references. The main results of this paper are the following theorems:

Theorem 1 Let $\alpha > -1, l, l'$ be non-negative integers not excecting $\frac{\alpha+1}{2}$, then for l > l',

- (1) $H_b^{ll'}$ is bounded iff $b \in B_\infty^0$, (Block space); (2) $H_b^{ll'}$ is compact iff $b \in b_\infty^0$, (Little Bloch space);

(3) if $1 , <math>H_b^{ll'} \in S_p$ iff $b \in B_p^{1/p}$, (Besov space); (4) if $0 , <math>H_b^{ll'} \in S_p$, then b = const, for l = l', $H_b^{ll'}$ is bounded iff $b \in L^{\infty}$, and $H_b^{ll'}$ is never compact unless b = 0.

Theorem 2 Let $\alpha > -1, l, l' < k$, then

- h_b^{ll'} is bouned iff b ∈ B_∞⁰;
 h_b^{ll'} is compact iff b ∈ b_∞⁰;
- (3) if $0 , <math>h_{i}^{ll'} \in S_{p}$ iff $b \in B_{p}^{1/p}$.

3. The proofs of Theorem 1 and 2

By the orthonormal bases of $A_l^{\alpha,2}(D)$ and $\overline{A}_l^{\alpha,2}(D)$, the two kinds of Hankel operators $H_b^{ll'}$ and $h_b^{ll'}$ are changed into infinite matrices, and then the proofs of Theorem 1 and 2

become the study of the "periodic" paracommutators (see [5],[6],[7]).

The proof of Theorem 1 Notice that $\{e_n^{(l)}(z)=c_{ln}^{-1}p_{ln}(\frac{|z|^2}{1-|z|^2})z^n\}_{n\geq 0}$ is an orthonormal basis of $A_l^{\alpha,2}(D)$ and $\{\bar{e}_n^{(l)}(z)=c_{ln}^{-1}p_{ln}(\frac{|z|^2}{1-|z|^2})\bar{z}^n\}_{n>0}$ is an orthonormal basis of $\overline{A}_l^{\alpha,2}(D)$. For the analytic symbol function $b(z)=\sum_{k=0}^{\infty}\hat{b}(k)z^k$, we now calculate the "matrix coefficient" of $H_b^{ll'}$,

$$\langle H_b^{ll'}(e_n^{(l')}), e_m^{(l)} \rangle = (\alpha + 1) \overline{\hat{b}}(n - m) c_l c_{l'} \sqrt{\frac{(\alpha + 2 - l')_n (\alpha + 2 - l)_m}{(l' + 1)_n (l + 1)_m}}.$$

$$\int_0^\infty p_{l'n}(t) p_{lm}(t) \frac{t^n}{(1 + t)^{n + \alpha + 2}} dt, \tag{1}$$

Using the formula of the hypergeometric function $_3F_2$ (see [8]),

$$_{3}F_{2}(-n,a,b;c,1+a+b-c-n;1)=rac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}}$$

and

$$_{3}F_{2}(-n,a,b;c,d;1) = \frac{(c-a)_{n}}{(c)_{n}} {_{3}F_{2}(-n,a,d-b;1+a-n-c,d;1)},$$

we can calculate the integral of (1)

$$\int_{0}^{\infty} p_{l'n}(t)p_{lm}(t) \frac{t^{n}}{(1+t)^{n+\alpha+2}} dt
= (n+1)_{l'}(m+1)_{l} \sum_{\nu=0}^{l} \frac{(-l)_{\nu}(l-\alpha-1)_{\nu}(-1)^{\nu}}{(m+1)_{\nu}\nu!} \sum_{\mu=0}^{l'} \frac{(-l')_{\mu}(l'-\alpha-1)_{\mu}(-1)^{\mu}}{(n+1)_{\mu}\mu!} \cdot \int_{0}^{\infty} \frac{t^{n+\nu-\mu}}{(1+t)^{n+\alpha+2}} dt
= (m+1)_{l}(n+1)_{l'} \frac{\Gamma(n+1)\Gamma(\alpha+1)}{\Gamma(n+\alpha+2)} \sum_{\nu=l'}^{l} \frac{(-l)_{\nu}(l-\alpha-1)_{\nu}(n+1)_{\nu}}{(m+1)_{\nu}(-a)_{\nu}\nu!} \cdot \int_{0}^{\infty} \frac{(-l)_{l'}(l-\alpha-1)_{l'}(n+1)_{\nu}}{(m+1)_{l'}(n+\alpha+2-l')_{l'}} \cdot \frac{\Gamma(n+1)\Gamma(\alpha+1)}{(n+1)_{l'}(n+\alpha+2)} \cdot \int_{0}^{\infty} \frac{(-l)_{l'}(l-\alpha-1)_{l'}(n+1)_{l'}(n+\alpha+2-l')_{l'}}{(-\alpha)_{l'}(-a+l)_{l'}(m+1)_{l'}(n+\alpha+2-l')_{l'}(m-n)_{l-l'}(-m-l)_{l-l'-1}} \cdot \int_{0}^{\infty} \frac{(-l)_{l'}(l-\alpha-1)_{l'}(m+1)_{l'}(n+\alpha+2-l')_{l'}(n-m+1-l+l')_{l-l'-1}}{(-\alpha)_{2l'}(-a+l')_{l'}(m+1)_{l'}(m+1+l')_{l-l'}(n-m+1-l+l')_{l-l'-1}} \cdot \frac{\Gamma(n+1)\Gamma(\alpha+1)}{\Gamma(n+\alpha+2)} {}_{3}F_{2}(-l+l'+1,-\alpha+l+l',n+1+l';$$

$$\frac{\Gamma(n+1)\Gamma(\alpha+1)}{\Gamma(n+\alpha+2)} {}_{3}F_{2}(-l+l'+1,-\alpha+l+l',n+1+l';$$

$$\frac{m+2+l',-\alpha+2l'}{(n+1)(n+1)(n+1)(n+1+l')} \cdot \frac{(-l)_{l'}(l-\alpha-1)_{l'}(n-l)_{l'}$$

Notice that

$$\frac{(m-n)_{l-l'}(-m-l)_{l-l'-1}}{(m+1+l')_{l-l'}(n-m+1-l+l')_{l-l'-1}} \approx \frac{m-n}{m+1+l'},$$
-- 329 --

hence we have the estimates $\langle H_b^{ll'}(e_n^{(l')}), e_m^{(l)} \rangle \approx (m+1)^{\frac{\alpha+1}{2}-l-l'}(n+1)^{l'-\frac{\alpha+1}{2}}(n-m)$, where the notation $u \approx \nu$ means that the ratio $\frac{u}{\nu}$ is bounded above and below by constans independent of n and m.

Since l > l', and $l.l' < \frac{\alpha+1}{2}$, we know that $\{\langle H_b^{ll'}(e_n^{(l')}), e_m^{(l)} \rangle\}$ satisfies the condition in [9], by the paracommutator theory, we know that Theorem 1 is true.

The proof of Theorem 2 Similar we only need to calculate the "matrix coefficient" of $h_h^{ll'}$:

$$\langle h_b^{ll'}(e_n^{(l')}), \bar{e}_m^{(l)} \rangle = (\alpha + 1) \bar{\hat{b}}(n+m) c_l c_{l'} \sqrt{\frac{(\alpha + 2 - l')_n (\alpha + 2 - l)_m}{(l'+1)_n (l+1)_m}} \cdot \int_0^\infty p_{l'n}(t) p_{lm}(t) (\frac{t}{1+t})^{n+m} \frac{\mathrm{d}t}{(1+t)^{\alpha+2}}.$$

Using similar calculate we can obtain the estimates of the "matrix coefficient" of $h_b^{ll'}$:

$$\langle h_b^{ll'}(e_n^{(l')}), ar{e}_m^{(l)}
angle pprox (m+1)^{rac{lpha+1}{2}-l+l'} (n+1)^{rac{lpha+1}{2}-l'} (n+m)^{l-lpha-1}.$$

By similar reasons we know that Theorem 2 is proved.

References:

- [1] HELGASON S. Groups and geometric analysis [M]. Acadmic Press, New York-London, 1984.
- [2] PEETRE J, PENG L and ZHANG G. A weighted Plancherel formula I. The case of the unit disk. Application to Hankel operators [R]. Report Stockholm Univ., 1990, 11.
- [3] LIU H and PENG L. Weighted Plancherel formula. Irreducible unitary representations and eigenspace representations [J]. Math. Scand., 1992, 72: 99-119.
- [4] ARAZY J, FISHER S and PEETRE J. Hankel operators on weighted Bergman spaces [J]. Amer. J. Math., 1988, 110: 989-1054.
- [5] JANSON S and PEETRE J. Paracommutators boundedness and Schatten-von Neumann properties [J]. Trans. Amer. Soc., 1988, 305: 467-504.
- [6] PENG L. Contribution to certain problems in paracommutators [J]. Dissertation, Stockholm.
- [7] PENG L. Paracommutators of Schatten-von Neumann class S_p , (0 [J]. Math. Scand, 1987, 61: 68-92.
- [8] ERDELYI A et al. Higher trasendental functions [M]. McGraw-Hill, 1953, 1.
- [9] PENG L. Toeplitz and Hankel operators on Bergman space [J]. Mathematikal, 1993, 40: 345-356.

一类不变的 Hankel 算子

张 成 国 (中央民族大学数学系, 北京 100081)

摘 要: 对于 $L^{\alpha,2}(D)$ 的两类 Moebius 不变子空间 $A_l^{\alpha,2}(D)$ 与 $\overline{A}_l^{\alpha,2}(D)$, 定义了对解析的记号函数 b(z) 的大的和小的 Hankel 算子 $H_b^{ll'}$ 与 $h_b^{ll'}$, 研究了它们的有界性、紧性及其 Schatten-von Neumann 类的 S_p 估计. 性质.