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A Kind of Invariant Hankel Operators *
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Abstract: For two kinds of the Moebius invariant subspace A;”Z(D) and E’Z(D) of
L*2(D), we define big and small Hankel operators H{'l and hi’l for the analytic symbol
function b(z), and study their boundedness, compactness and Schatten-von Neumann
classes S,-estimates, and hence develope Schatten-von Neumann properties of these op-
erators.
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1. Introduction

Let D be the unit disk in the complex plane equepped with the Lebesgue measure
dm(z). The Moebius group G = SU(1,1) consists of all 2 x 2 complex matrices

g:(ab>, a,b,c,dEC
cd

with ¢ = b,d = @, ad — be = 1. It acts on D via the trasformations

(2) az+b
— gz = = .
£ g\ cz+d

Let dpo(z) = 1 (1-|2|%)*dn(z) with @ > —1 and let L*?(D) be the space consisting
of all functions on D square integrable with respect to the measure dp,(z). The group
SU(1,1) acts on L*?*(D) via TY : f(z) — flg(2)l{g'(z)}*/* = f(92)(cz + d)™¥, where
v=a+2.
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The Casimir operator becomes

2
A,., = —4(1 — |z|2)2a—(35 + 4vz(1 - |z|2)% -4 2.

For v = 0 i.e. for a = 2, the operator Ag has only the continuous spectra and the
Plancherel formula has been studied by Harish-Chandra, Helgason et al (see [1]). In this
case the space L*?(D) does not contain any non-trivial analytic function. For v > 1,
the space L*?(D) contains non-trivial analytic functions, the subspace consisting of all
analytic functions is called the (weighted) Bergman space and is denoted by A?’Z(D).
In this case J.Peetre, L.Peng and G.Zhang in [2] and H.Liu and L.Peng in [3] gave the
eigenvector of the operator A, and established the weighted Planchrel formula. They have
find that L*2?( D) has some discrete components (invariant subspaces) Ay, where k < "‘zil
In other words, the spactra of A, consist not only of the continuous part, but also of the
discrete part and Ay, are eigenspaces of A, with the discrete spectra. They also gave the
orthonormal basis of A} with Romanovski polynomials.

2. Main result

Let P; and P, denote the orthogonol projections of L*2(D) onto A$*(D) and Z;I’z(D)
respectively. Now we define two kinds of Hankel operators for the analytic symbol function
b(z): HY = PM;Py and R = P)M;Py. Because all of the subspaces A?'z(D) and

Z?’z(D) are invariant under the group actions of SU(2, R), both of the two kinds of
Hankel operators are invariant, i.e., we have

vl _ gl v vpll! _ U v
T'H' = H and TVRY = Rl TV,

bgtyg>

In this paper we will give the boundedness, compactness and Schatten-von Neumann
classes Sp-estimates of them. For S, classes and analytic Besov spaces Bp, may see [4] of
the references. The main results of this paper are the following theorems:

Theorem 1 Let a > —1,1,I' be non-negative integers not excecting 9—‘2}'—1—, then for 1 > U,
(1) HY is bounded iff b € BY, (Block space);
(2) HY is compact iff b € %, (Little Bloch space);
(3) ifl<p<oo,H¥ €S, iffbe B;/p, (Besov space);
(4) if0<p< 1,Hll)l' € S5,, then b = const,
forl = l’,H,f" is bounded iff b € L™, and H,l)l/ is never compact unless b = 0.

Theorem 2 Let a > —1,1,I' < k, then
(1) h¥ is bouned iffb € BY ;
(2) R is compact iffb e 80 ;
(3) if0<p<oo,hl' cS§,iffbe BLP.

3. The proofs of Theorem 1 and 2

By the orthonormal bases of A;"z(D) and Z?’Z(D), the two kinds of Hankel operators
HY and Rl are changed into infinite matrices, and then the proofs of Theorem 1 and 2
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become the study of the “periodic” paracommutators (see [5],[6],[7]).

The proof of Theorem 1 Notice that {eg)(z) = cl_nlpln(T‘ﬁlzz—lf)Z"}nzo is an orthonormal
basis of A;*?(D) and {ég)(z) = cl‘nlpln(l—l_z—gl—?)zn}n>0 is an orthonormal basis of ZY’Z(D).
For the analytic symbol function b(z) = Y222, b(k)z*, we now cal-ulate the “matrix coef-
ficient” of H ,l)l',

at+2-U)p(a+2—Dm
T Dall+ 1)

(Y (), ) = (a+ 1)b(n - m>\/ :

/Ooo plln(t)p,m(t)(ﬁ—gmdt, (1)

Using the formula of the hypergeometric function 3 F, (see [8]),

B (e —a)u(c—b),

—n,a,b;c,1 b—c—mn;l) =
3F2( n,a,o;c, +a'+ c Tl,].) (c)n(c—a—b)n

and
(¢ —a)

()n

3F2(—n,a,b;¢,d;1) = 3F2(—n,a,d = b;1+a—-n-—c¢,d;l),

we can calculatethe integral of (1)

oo tﬂ
10 (8) Pty (1) ——————dt
[ 2P 0) gy

Lo (=0l = a = 1), (1) u (=1)u(l = a = 1),(~1)
=(n+1)1'(m+1)zz( )((m+1),,3s( )Z( )((nﬂ)“ﬂ)!( )

v=0

1=0
oo tn+u—u

0 (1 + t)n+a+2 de

T(n+ Dl (a+1) (< (=Du(l—a—1).(n+1),
T(n+a+2) ; (m+ 1,(—a)r!
sF (-l —a-1,n+1+vin+1Lv—a;l)
_ (—l)y(l —-a — 1)1/(m -+ 1)[(71. + l)y(n +a+2- ll)ll ) I‘(n + l)I‘(a + 1) .
- (—a)y(—a-{—l)p(er 1)[! I‘(n+ a+2)
sFy(~l+Ul-a-1+Uin+1+U;m+ 140, —a+20;1)
(-—l)l!(l - — 1)1:(m + l)l(n + l)y(n +a+2- l’)p(m - n)l_y(«-m - 1)1_11_1 )
(—)w(—a+p(m+1)p(m+1+U)_pn—m+1-14+1)_p_
I'(n+ I'(a+ 1)
IF'(n+a+2)

= (m + 1)1(n + l)l’

sFy(~l+1U+ 1, —a+1+U,n+1+10;

m+2+1,—a+2051). (2)

Notice that
(m - n),_l,(——m - l)l_ll_l - m-n

(m+1+0)_p(n—m+1—=14+V)_p_y  m+14+10"
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hence we have the estimates (H}' (e,(f )) e,(n)) (m+ 1)_+_ U CF ) e (n m), where

the notation u ~ v means that the ratio ¥ is bounded above and below by constans
independent of n and m.

Since I > I, and LI' < 1, we know that {(H}" ( ) el )} satisfies the condition in
" [9], by the paracommutator theory, we know that Theorem 1 is true.

The proof of Theorem 2 Similar we only need to calculate the “matrix coefficient” of
hff':

a+2-(a+2-n
"+ D+ Dm
‘/Ooo pl’n(t)plm(t)( 1 :_ ¢ (1 +dtt)a+2 )

Using similar calculate we can obtain the estimates of the “matrix coefficient” of hffl:

B (1), 20) = (o + Dn + m>\/ (

)n+m

(R (e®),e®y x (m+ 1) " H (n 4+ 1) (n 4 m)e L,

By similar reasons we know that Theorem 2 is proved.
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