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On Graded Essential Right Ideals *
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Abstract: Let R be a graded ring by a group G. For the relative rings R, R# G*(smash
product), Re, Q(R)(quoticut ring), R (fixed ring), R * G(crossed product) and normal-
izing extensions ring S of R, we study the properties of nonsingular, right uniform, right

socle. When Rp is a Y J-lujective module, we have J(R) = Z(R).
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1. Introduction

All rings considered in this paper are associative with 1, and all modules are unital. R
denotes a graded ring by a group G, and M denotes the graded right R-module.

A ring R is nonsingular provided that Z(R) = 0, where Z(R) = {a € R|rtannga is an
essential right ideal of R} (see {2]). Similarly Zg(R) = {a € R| there is a graded essential
right ideal T of R such that aI = 0} is a graded ideal of R. (see [4]). If Zg(R) = 0, we
say that R is a graded nonsingular ring. It is easy to see that Zg(R) C Z(R).

A (graded)ring R is (graded) right uniform provided that each non-zero (graded) right
ideal of R is (graded) essential. If R is right uniform ring, then Z(R) consists of all left
zero divisor. Let K be a ideal of R# G*. If K. = {a € Re|aP. € K}, then K, is an ideal
of R.. The graded radical of a graded module M, denoted by RadgM, is the sum of all
graded small submodules of M. The socle of the graded module M; denoted by Socg M,
is the intersection of all graded essential submodule of M, and Soc(M) C SocgM.

We say that S is a finite normalizing extension of R if there exists a finite subset
{a1,a2, - -,a,} of S such that § = i Ra; and Ra; = a;R for all i = 1,2,---,n. It is easy

1=1
to see that for each a;, there exists a 0; € AutR such that o;(r) = ', in which a;r = r'a;,

for 7,7 € R. If M is a right R-module, then we have M ® 5§ = é(M@a,-) %‘ EnB M,
R i=1 i=1

1=

where M7 is a right R-module (m - r = mr?").
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Let M be a right R-module. If for each 0 # a € R, there exists a positive integer n
such that a™ # 0, and for each right R-module morphism from a™R to M can be extended
the morphism from R to M, then M is called a Y J-injetive module. It is easy to see that
a right P-injective module is a Y J-injective module. Similarly we can give the definition
of graded Y J-injective module.

2. Zg(R),Z(R.) and Z(R#G*)

Theorem 2.1 Let R be a graded ring by a group G.

(1) If the grading is nondegenerate, then Z(R# G*). = Z(R.) and Z(R#G*)N R =
Zg(R);

(2) If the grading is faithful, then Z(R# G*) = Zg(R)# G*;

(3) If G is an ordered group, then Zg(R) = Z(R).

Proof (1) For any 0 # a € Z(R# G*)., then aP. ¢ Z(R# G*). Let 0 # I be a right

ideal of R.. Then there exists a 0 # z € ), IR;'P;Nrtanngyg+(aP.). Say z = 2 id; Py,
geG i=1

where ¢; € I,d; € R, and ¢;d; # 0, then 0 # Z(c,dJR C I NrtannR.(a), and so

a € Z(R.). The converse containment is easy to show by [4 Lemma 3 and Theorem 5].
Then Z(R# G*). = Z(R.). For Z(R# G*)NR = Zg(R), by [4, Lemma 3}, we only need to
show that if 0 # a € Z(R# G*)Nh(R), then a € Zg(R) In fact, let 0 # I be a graded right

ideal of R, then exists a0 #b € [,,0 # ¢ = E bd; Py, € ¥ bR;'P, N rtannpyg-(aP.),
geG

where d; € Rgl,l,bdl # 0 and abd; = 0, so bd; € In rtanng(a),a € Zg(R).

(2) Forany 0 # z = Y a,1P, € Z(R# G*), where a5, € R,, there exists a
g,h€G
aop # 0,50 zPg # 0, and ¢Pg € Z(R§G*). Say that z = aPg,a € R. If I is a nonzero

graded right ideal of R, then Ig # 0 Thus, there exists a 0 # b € Iz and 0 # y =

E bd; P, € szR 1P, N rtannpyg«(z ), where d; € R ot bd; # 0. So zy = 0,abd; = 0,
i=1 g€

and bd; € I n( ﬂ rtannp(a,)), where a = 2 a,. It follows that a € Zg(R) , that is

z € Zg(R)# G* Z(R# G*)C Zg(R)# G~ By [4 Lemma 3], (2) is proved.

(3) For any 0 # = € Z(R), suppose that z = z,, +2,, +- - 2o, (01 <02 < - < ).
and z,, # 0. then z,, € Z(R)™. Since there is an essential right ideal I of R such
that ¢ = 0, so 2,,/~ = 0. and I~ is a graded essential right ideal of R. We have
z,, € Zg(R) C Z(R), and ¢ — z,, € Z(R). An argument such as above by replace z to
z —2,,, we have z,, € Zg(R),i = 1,2,---,n. Hence z € Zg(R). that is Z(R) C Zg(R).

Theorem 2.2 Let G be a finite group, G act on a ring A, Then

(1) Z(AxG)n A = Z(4);

(2) If A is semiprime and A has no |G|-torsion. Then Z(A®) = Z(A)€ and Z(A)*G =
Z(Ax*G).

Proof (1) Let 0 # 7 € Z(A),Ibe anon-zero right ideal of A+G.If0 # s = i r;o; € I, and
i=1
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7. ¢ rtanng(r) for some integer k. Then there exists a 0 # z € A, such that ryz # 0, and
rriz = 0. Say that 2’ € A such that o2’ = 25, then 0 # sz’ € I and rpz € rtann4(r),
where r;z is the coefficient of 7, within sz’. It follows that sz’ has more confficients in
rtanng(r), than s does. Thus there exists a s € I such that all the confficients of s belong
tortanny(r), and so r € Z(AxG), Z(A) C Z(A*G). Conversely, let 0 #7r¢c Z(AxG)N A,
I be a non-zero right ideal of A. Then we have 0 # = Zﬂ: a;5; € I(AxG)Nrtanng.g(r),

=1
where a; € I. So ra; = 0 and a; € LN 1tanny(r),r € Z(A).

(2) Let 0 # a € Z(A)C and I be a non-zero right ideal of AS. Then I 4 is a G-invariant
right ideal of A. Say J = rtanng(a), so (] J9) N TA # 0. By Theorem 4.3 of [7], we
g€eG

have I'NJ D tr(( ) J9)NTA) # 0 and a € Z(A®). The equality Z(A)¢ = Z(A%) will
g€G

follow if we apply the Lemma 5.7 of [7]. Beeause A x G is a strongly graded ring, and
(A * G)# G~ is a semiprime ring. By theorem 2.1 and Lemma 3 of [4 ], it is easy to show
that Z(A) + G = Z(A % G).

Theorem 2.3 Let S be the set of all regular elements of A; Q(A) be the classic quotient
ring. Then Z(Q(A)) = Z(A)S™L.

Proof For each 0 # z € Z(Q(A)), say ¢ = ab~(a € A,b € §). Then rtanny(z) be an
essential right ideal of A by rtanng4)(z) is an essential right ideal of Q(4). If J is a
non-zero right ideal of A, then there exists a 0 # d € J such that 0 # bd € rtann4(z).
and ad = 0,J Nrtanng(a) # 0,a € Z(A). Thus Z(Q(A)) C Z(A)S~'. Conversely, let
0 #z = ab™' € Z(A)S™!, where a € Z(A),b € §,J be a right ideal of Q(A). Then
(J N A)Nrtanng(a) # 0,7 Nrtannga)(a) # 0,a € Z(Q(A)). Thus Z(A)S~! C Z(Q(A)).

3. Right uniform rings

Theorem 3.1 Let S be a finite normalizing extension of ring R. Then S is a right
uniform ring if and only if R is a right uniform ring.

Proof If K is a non-zero right ideal of R, then K S is an essential right ideal of §. By
Proposition 1.1 of [5], K'Sr is an essential submodule of Sg. Since KS = @ K%, and

=1
S EnB R%, thus KR is an essential submodule of Rp. Conversely, let K be a nonzero

=1
right ideal of §, and K; = {r € R| the re are ry,72,---,7_1,%i41,**,7n € R such that

r1a1+7282+ -+ 7181 +7a; + 710,41+ - -+ Pha, € K} Then K; is a nonzero right
n

ideal of R. So K is essential. Say that J = () K;. Then J is an essential right ideal of R.
Jj=1
For any nonzero right ideal 7 of S, 0 # I = F] T; is a right ideal of R(Here T; is similar
=1
to K; above. i =1,2,...,n). Thus 0 £ INJ C(INJ)SCISNJSCKNT, and K is

essential.

Theorem 3.2 Let G be a finite group, and G act on a ring A. For the following
statements: (1) Ax G is a right unform ring; (2) A is a right uniform ring; (3) A is a right
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G-uniform ring and (4)AC is a right uniform ring; we have

(D (1)&(2) = (3).

(II) If A is semiprime and A has no |G|-torsion, then (3)& (4).

Proof By Theorem 3.1,,(1)< (2) and (2)= (3) are easy. (4) = (3) follows from [7,
Lemma 5.1]. Now we show (3) = (4). Let K be a nonzero right ideal of A®. Then K A is

a G-invaviant right ideal of A, and so is G-essential. Then K is an essential right ideal of
AS.

Theorem 3.3 Let R be a G-graded ring. For the following statements: (1)R# G* is a
right G-uniform ring; (2) R is a graded right uniform ring; (3) R is a right uniform ring
and (4) R, is a right uniform ring; we have

(I) ()= (2) <= (3),(3) = (1).

(II) If R is a commutative ring, then (1)& (2).

(III) If the grading is nondegenerate, then (2)& (4).

Proof (1) = (2) Let I1,I; be two graded right ideals of R. Then L;(R# G*) is a G-
invariant right ideal of R# G*(i = 1,2). So I1(R# G*) N I,(R# G*) # 0. Similar to the
proof of theroem 2.1(2), there exists a 8 € G and a € R such that 0 # apg € L(R#
G*) N I;(R# G*). So we have 0 # a € I} N I,. Hence I; is a graded essential right ideal.

(3)= (1) Let I be a nonzero G-invariant right ideal of R#G*. Then there exist
0 # a€ R and § € G such that apg € I, and ap, = (apﬂ)ﬂ—lg € I, for all ¢ € G. Hene
a € INR.aR is essential. Let J be a non-zero G-invariant right ideal of R# G, then trere
exists a 0 # b € R such that b € J N R, it follows that 0 # aRNbR C I N J, that is I is
G-essential.

The others are easy.

Theorem 3.4 Q(A) is a right unform ring if and only if A is a right uniform ring.

Proof Let I,J are non-zero right ideals of R. Then IS~? is an essential ideal of Q(4),
and I§71 N A is an essential right ideal of A. Thus (IS"*NA)NJ # 0 and INJ # 0, that
is I is an essential right ideal. Conversely, let k be a non-zero right ideal of Q(A). Then
K =(KnNA)S™, so(KnNA)S™!is an essential right ideal of Q(A).

4. Socle

Theorem 4.1 Let G be a finite group, G act on a ring A. Then

(1) SocA D AN Soc(A*G).

(2) If A is semiprime and A has no |G|-torsion, then SocA = AN Soc(A * G),Soc(A *
G) = (Soc A) xG.

Proof (1) For any r € AN Soc(A4 * G). we have r(A4 * G) is a completely reducible 4 x G-
module. By [6, Theorem 4], 7(A * G) is a completely reducible A-module. Since rA4 is a
A-submodule of 7(A4 x G), so rA is a completely reducible module and r € Soc(4).

(2) Let r € SocA. Then rA, is completely reducible. Since r(4 * G) = i rAG;, so

i=1
r(A*G) is a completely reducible right A-module. Thus r(A * G) has a finite composition
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series as a A x G-module. It follows that A * G is semiprime and each minimum ideal of
A x G generate by idempotent elements. So that »(A * G) is completely reducible right
A x G-module, hence 7 € Soc(A * G). Conversely, for any # € Soc(A *xG),(z * (A * G))asc
is a completely reducible module, and z(A * G) is also a completely reducible right A-

module. Thus zA is a completely reduible right A-module. Let 24 = % y;A be a sum of

simple A-module. For each y;, say that = Z 7;:0;. We have a right A-module morphism

fii 1 y;A = ;A yia — rja. Smce AxGi 1s a free normalizing extension then the above
map is well defined. If rj; # 0. then y;A = r;;A, and rj;A is a simple A-module. So

T;i € SocA,y;A = jerﬁAE,' C (SocA) x G,z € (Soc(A))x G

Theorem 4.2 Let R be a G-graded ring. Then

(1) If G is a finite group and R is a commutative ring, then Socg(R) # G* = Soc(R#
G*).

(2) If R. is a simple Artin ring and R. has no |G|-torsion. Supp R = {z € G|R; #
0} = G, then Socg(R) = SocR.

Proof (1) Let J be an essential right ideal of R# G*. Then () J? is an essential right
geEG
ideal of R# G™. Suppose I is a graded essential right ideal of R, then ( [} J?) N I(R#
geG
G*) # 0, An argument similar to the Theorem 3.3, we have that there exists a0 # a € R

such that aP, € (| J9) NI(R# G*). Soa € I and aP, € [ J9. Hence apy = (ap,)" €
geq geiG

N J9,Vh € G. It follows that a = 3 aP, € () J9,0£a€IN(( N J9) N R).SocgR C
g€G heG geG g€G

(N J9) N R C J,Socg(R) C Soc(R# G*). Conversely, let I be a graded essential right
geG

ideal of R J be a non-zero right ideal of R# G*, there exists aff € G,0 # a € R such that
ape € JP7 ,INaR # 0. Hence 0 # (INaR)Ps = (INaR)P,)? C IPsnJ C I(R# G*)N J.
Thus I(R# G*) is an essential right ideal of R# G*.Soc(R# G*) C I(R# G*). For any

z =3, a?P, € Soc(R# G*), where a? € R. Since Soc(R# G*) is G-invaria nt, for every
g€G

g, we have a?P, = (2P,)9 # € Soc(R# G*) C I(R# G*), (VB € G) and a? € I(VI). Thus
a? € SocgR(VYg € G), and so z € (SocgR)# G*.

(2) By [8, proposition 1.11], we have R = R, * G.SocR = (SocR.) * G by the Theorem
4.1.(2). Since R, * G is a strongly graded ring, by the theorem 4.2(1), we have Socg(R, *
G) = Soc(R.): (Re * G) = (SocR.) x G. That is SocR = SocgR.

For the classical quotient ring, we have

Theorem 4.3 Let Q(A) be a right quotient ring of A, S be the set of all regular elements
of A. Then (SocA)S~! = Soc(Q(A)).

5. Graded radical

In this section. G is an ordered group.
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Lemma 5.1 Let m € RadM. Then m, R is a graded small submodule and hence is small
submodule, where m,, is the highest degree homogeneous component of m.

Proof Suppose m,, R is not a graded small submodule. Then 3} = {B is a graded
submodule of M|B # M and m, R+ B = M}. We may apply Zorn's Lemnma to ) and
choose a maximal such graded submodule, call it C. There exists a maximal submodule
K of M such that K~ = C. Then m ¢ K. But mR is a small submodule, a contradiction.
It follows that m,, is a graded small submodule. Let K be a submodule of M, and
my,, R+ K = M. Then mR+ K = M,K = M. So m,, R is a small submodule.

Lemma 5.2 (RadM) ~= (RadM)g = RadM N RadgM.

Proof For any =z € (RadM )™ N h(M), there exists a m € RadM, such that m,, = z.
By Lemma 5.1, we have z € RadgM N RadM C (Rad M)g, and (RadM)~ C RadM N
RadgM C (RadM)e C (RadM)™.

Theorem 5.3 (RadM)g = (RadM )~ = RadM C RadgM.

Proof For any m € RadM, we have m,, € (RadM)~ C RadM N RadgM. Similar
to the proof of Theorem 2.1(3), we get m € RadgM N (RadM)~. That is RadM C
RadgM N (RadM)™. '

Theorem 5.4 Let R/RadgR be a semisimple ring. Then SocgR = SocR.

Proof Since R/RadgR is a semisimple ring, so R/RadgR is graded seimisimple. It is
easy to show that SocgR = ltannp(RadgR). And ltanng(RadgR) is a semisimple right
R/RadgR-module. Soltannp(RadgR) is a semisimple right R-module. {tanng(RadgR) C
SocR. Thus Socg R C SocR. Convesely, it is easy to see.

Theorem 5.5 Let G be a finite group. R be a G-graded ring. Then Rad(R# G*) =
(RadgR)# G*.

Proof First, let I be a maximal graded right ideal of R. Say that }_ = {J is right ideal
of R# G*|J N R = I}. Since G is a finite group, then I = I(R# G)N R, and so Y is
nonempty. We may apply Zorn's lemme to }_ and choose a maximal such right ideal, call it
Q. Then Rad(R# G*)NR C @NR = I,Rad(R# G*)NR C RadgR. For any =z € Rad(R#

G*),let ¢ = Y a9P,;. Then 2P, = a9P, € Rad(R# G*) for each g € G. It follows that
geG

a9Py = (a%P,)9" P ¢ (Rad(R# G*))? '# C Rad(R# G*) VB € G. and so a? € Rad(R#
G*)N R C RadgR.(Vg € G) Thus, ¢ € (RadgR){G*, and Rad(R# G*) C (RadgR)# G*.
Conversely, let I be a maximal G-right ideal of R# G*, say that >, = {J is a right ideal of
R# G*| (| J9 = I}. It is easy to see that there exists a maximal element Q in ). Since
g€qG
IN R is a maximal graded right ideal, so (RadgR)# G* C(INR)# G*CI= () Q4.
geG

Thus (RadgR)# G* C Rad(R#G™).

6. YJ-injective module
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Theorem 6.1 Let M be a Y J-injective right R-module. Then M is a divisible module.

Proof For any my € M,ryg € R and rg is not a left zero divisor, there exists a positive
integer n such that r§ # 0 and the right R-module morphism from rjR to M can be
extended to a right R-module morphism from R to M. Define f : rfR — M,rjr — mgr.
It is easy to see that f is a right R-module morphism. There exists an ¢ € M such that
mo = f(r3) = zr§ = (zrg " )ro(mo = zro When n = 1). Thus M is a di visible module.

Theorem 6.2 Let S be an Excellent extension of R, Mg be aY J-in jective module. Then
Mp is a Y J-injective module.

Proof For any a € R, thexe exists a positive integer n such that a™ # 0, and the right

R-module morphism from a™5 to M can be extended to right R-module morphism from

Sto M. Let f:a"R — M be a right R-module morphism. Say that J = a"R,, +
L3 L3

a"Ro, ++--+a"R,, = a"5, Suppose F: J - M, 3 z;a; » Y f(zi)a; (where z; € a"R.)
7=1 =1

Then F is well defined. This follows F is a right S-module morphism. And there exists a

morphism G : S — M such that G|y = F, so G|g : R — M is a right R-module morphism

a‘nd (GIR)|auR = f’

Theorem 6.3 Let Rr be a Y J-injective module, Then J(R) = Z(R).

Proof For any b € Z(R) and a € R, we have rtanng(ab) N rt(anng(1l — ab)) = 0. Since
ab € Z(R), so rtannp(1l — ab) = 0. There is a positive integer n such that for any right
R-module morphism from (1 - ab)"R to R can be extented right R-module morphism form
RtoR. Set f:(1-ab)"R — R,(1-—ab)"r — r, then f is a right R-module morphism. So
there exists a y € R such that 1 = f((1 - ab)™) = y(1 - ab)"™ = y((1 — ab)*~1)(1 - abd), that
is ab is a right quasi-regular element for any a € R. Thus b € J(R) and Z(R) C J(R).

Conversely, Let b € J(R) but b ¢ Z(R). There is a non-zero right ideal I of R such
that rtannp(b) @ I is an essential right ideal of R. For 0 # c € I, there exists a positive
integer n such that (bc)* # 0. Set g : (be)"R — R, (bc)"*r — c(be)* " Ir(ber — cr when
n = 1). It is easy to see that g is a right R-module morphism. There is ad € R such
that c(ab)*~ = g((bc)*) = d(bc)™ = dbe(bc)™ . Since db € J(R), so there is a k € R
such that db + k — kbd = 0. Then c(bc)™! = dbe(be)*™! = kdbc(be)™™ ! — ke(be) ™! = 0.
Acontradiction. Thus b € Z(R).

By the Theorem 6.1 and 6.3, we have

Theorem 6.4 Let R be a right uniform right and Rr be a Y J-injective modulee Then
(1) J(R) consists of all zero divisors.
(2) R/J(R) is a dvisible ring.
(3) R is alocal ring.
(4) R is an IBN ring.
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