On Graded Essential Right Ideals *

CHEN Jian-hua, WEI Jun-chao (Dept. of Math., Yangzhou Univ., Yangzhou 225002, China)

Abstract: Let R be a graded ring by a group G. For the relative rings R, $R \# G^*$ (smash product), Re, Q(R) (quotient ring), R^G (fixed ring), R * G (crossed product) and normalizing extensions ring S of R, we study the properties of nonsingular, right uniform, right socle. When R_R is a YJ-injective module, we have J(R) = Z(R).

Key words: nonsingular ring; right uniform ring; socle; YJ-injective module.

Classification: AMS(1991) 16D/CLC O153.3

Document code: A Article ID: 1000-341X(2000)03-0337-08

1. Introduction

All rings considered in this paper are associative with 1, and all modules are unital. R denotes a graded ring by a group G, and M denotes the graded right R-module.

A ring R is nonsingular provided that Z(R) = 0, where $Z(R) = \{a \in R | \operatorname{rtann}_R a \text{ is an essential right ideal of } R \}$ (see [2]). Similarly $Z_G(R) = \{a \in R | \text{ there is a graded essential right ideal } I \text{ of } R \text{ such that } aI = 0 \}$ is a graded ideal of R. (see [4]). If $Z_G(R) = 0$, we say that R is a graded nonsingular ring. It is easy to see that $Z_G(R) \subseteq Z(R)$.

A (graded) ring R is (graded) right uniform provided that each non-zero (graded) right ideal of R is (graded) essential. If R is right uniform ring, then Z(R) consists of all left zero divisor. Let K be a ideal of $R\# G^*$. If $K_e = \{a \in R_e | aP_e \in K\}$, then K_e is an ideal of R_e . The graded radical of a graded module M, denoted by $\operatorname{Rad}_G M$, is the sum of all graded small submodules of M. The socle of the graded module M; denoted by $\operatorname{Soc}_G M$, is the intersection of all graded essential submodule of M, and $\operatorname{Soc}(M) \subset \operatorname{Soc}_G M$.

We say that S is a finite normalizing extension of R if there exists a finite subset $\{a_1, a_2, \dots, a_n\}$ of S such that $S = \sum_{i=1}^n Ra_i$ and $Ra_i = a_iR$ for all $i = 1, 2, \dots, n$. It is easy to see that for each a_i , there exists a $\sigma_i \in \operatorname{Aut} R$ such that $\sigma_i(r) = r'$, in which $a_i r = r' a_i$, for $r, r' \in R$. If M is a right R-module, then we have $M \bigotimes_R S = \bigoplus_{i=1}^n (M \bigotimes_i a_i) \cong \bigoplus_{i=1}^n M^{\sigma_i}$, where M^{σ_i} is a right R-module $(m \cdot r = mr^{\sigma_i})$.

^{*}Received date: 1997-10-24; Revised date: 1999-07-19

Biography: CHEN Jian-hua (1963-), male, born in Rugao county, Jiangsu province, M.Sc., currently an associate professor of Yangzhou University.

Let M be a right R-module. If for each $0 \neq a \in R$, there exists a positive integer n such that $a^n \neq 0$, and for each right R-module morphism from $a^n R$ to M can be extended the morphism from R to M, then M is called a YJ-injetive module. It is easy to see that a right P-injective module is a YJ-injective module. Similarly we can give the definition of graded YJ-injective module.

2. $Z_G(R), Z(R_e)$ and $Z(R \# G^*)$

Theorem 2.1 Let R be a graded ring by a group G.

- (1) If the grading is nondegenerate, then $Z(R \# G^*)_e = Z(R_e)$ and $Z(R \# G^*) \cap R =$ $Z_G(R)$;
 - (2) If the grading is faithful, then $Z(R \# G^*) = Z_G(R) \# G^*$;
 - (3) If G is an ordered group, then $Z_G(R) = Z(R)$.
- **Proof** (1) For any $0 \neq a \in Z(R \# G^*)_e$, then $aP_e \in Z(R \# G^*)$. Let $0 \neq I$ be a right ideal of R_e . Then there exists a $0 \neq x \in \sum_{g \in G} IR_g^{-1}P_g \cap \operatorname{rtann}_{R \not \models G^*}(aP_e)$. Say $x = \sum_{i=1}^n c_i d_i P_{g_0}$, where $c_i \in I, d_i \in R_{g_0}^{-1}$ and $c_i d_i \neq 0$, then $0 \neq \sum_{i=1}^n (c_i d_i) R_{g_0} \subseteq I \cap \operatorname{rtann} R_e(a)$, and so $a \in Z(R_e)$. The converse containment is easy to show by [4 Lemma 3 and Theorem 5]. Then $Z(R \# G^*)_e = Z(R_e)$. For $Z(R \# G^*) \cap R = Z_G(R)$, by [4, Lemma 3], we only need to

show that if $0 \neq a \in Z(R \# G^*) \cap h(R)$, then $a \in Z_G(R)$. In fact, let $0 \neq I$ be a graded right ideal of R, then exists a $0 \neq b \in I_e, 0 \neq x = \sum_{i=1}^n b d_i P_{g_i} \in \sum_{a \in G} b R_g^{-1} P_g \cap \operatorname{rtann}_{R \parallel G^*}(a P_e),$

- where $d_i \in R_{g_i}^{-1}$, $bd_i \neq 0$ and $abd_i = 0$, so $bd_i \in I \cap \operatorname{rtann}_R(a)$, $a \in Z_G(R)$.

 (2) For any $0 \neq x = \sum_{g,h \in G} a_{g,h} P_h \in Z(R \# G^*)$, where $a_{g,h} \in R_g$, there exists a $a_{\alpha,\beta} \neq 0$, so $xP_{\beta} \neq 0$, and $xP_{\beta} \in Z(R \sharp G^*)$. Say that $x = aP_{\beta}, a \in R$. If I is a nonzero graded right ideal of R, then $I_{eta}
 eq 0$. Thus, there exists a $0
 eq b \in I_{eta}$ and 0
 eq y = $\sum_{i=1}^{n} b d_{i} P_{g_{i}} \in \sum_{g \in G} b R_{g}^{-1} P_{g} \cap \operatorname{rtann}_{R \sharp G^{*}}(x), \text{ where } d_{i} \in R_{g_{i}^{-1}}, b d_{i} \neq 0. \text{ So } xy = 0, abd_{i} = 0,$ and $bd_i \in I \cap (\bigcap_{\sigma \in G} \operatorname{rtann}_R(a_\sigma))$, where $a = \sum_{\sigma \in G} a_\sigma$. It follows that $a \in Z_G(R)$, that is $x \in Z_G(R) \# G^*, Z(R \# G^*) \subseteq Z_G(R) \# G^*$. By [4,Lemma 3], (2) is proved.
- (3) For any $0 \neq x \in Z(R)$, suppose that $x = x_{\sigma_1} + x_{\sigma_2} + \cdots + x_{\sigma_n}$, $(\sigma_1 < \sigma_2 < \cdots < \sigma_n)$. and $x_{\sigma_i} \neq 0$, then $x_{\sigma_n} \in Z(R)^{\sim}$. Since there is an essential right ideal I of R such that xI = 0, so $x_{\sigma_n}I^{\sim} = 0$. and I^{\sim} is a graded essential right ideal of R. We have $x_{\sigma_n} \in Z_G(R) \subseteq Z(R)$, and $x - x_{\sigma_n} \in Z(R)$. An argument such as above by replace x to $x-x_{\sigma_n}$, we have $x_{\sigma_i}\in Z_G(R), i=1,2,\cdots,n$. Hence $x\in Z_G(R)$. that is $Z(R)\subseteq Z_G(R)$.

Theorem 2.2 Let G be a finite group, G act on a ring A, Then

- (1) $Z(A*G) \cap A = Z(A)$;
- (2) If A is semiprime and A has no |G|-torsion. Then $Z(A^G) = Z(A)^G$ and Z(A)*G =Z(A*G).
- **Proof** (1) Let $0 \neq r \in Z(A)$, I be a non-zero right ideal of A*G. If $0 \neq s = \sum_{i=1}^{n} r_i \overline{\sigma}_i \in I$, and

 $r_k \notin \operatorname{rtann}_R(r)$ for some integer k. Then there exists a $0 \neq x \in A$, such that $r_k x \neq 0$, and $rr_k x = 0$. Say that $x' \in A$ such that $\overline{\sigma}_k x' = x\overline{\sigma}_k$, then $0 \neq sx' \in I$ and $r_k x \in \operatorname{rtann}_A(r)$, where $r_k x$ is the coefficient of $\overline{\sigma}_k$ within sx'. It follows that sx' has more confficients in $\operatorname{rtann}_A(r)$, than s does. Thus there exists a $s \in I$ such that all the confficients of s belong to $\operatorname{rtann}_A(r)$, and so $r \in Z(A*G)$, $Z(A) \subseteq Z(A*G)$. Conversely, let $0 \neq r \in Z(A*G) \cap A$, I be a non-zero right ideal of A. Then we have $0 \neq x = \sum_{i=1}^n a_i \overline{\sigma}_i \in I(A*G) \cap \operatorname{rtann}_{A*G}(r)$, where $a_i \in I$. So $ra_i = 0$ and $a_i \in I \cap \operatorname{rtann}_A(r)$, $r \in Z(A)$.

(2) Let $0 \neq a \in Z(A)^G$ and I be a non-zero right ideal of A^G . Then IA is a G-invariant right ideal of A. Say $J = \operatorname{rtann}_A(a)$, so $(\bigcap_{g \in G} J^g) \cap IA \neq 0$. By Theorem 4.3 of [7], we have $I \cap J \supseteq \operatorname{tr}((\bigcap_{g \in G} J^g) \cap IA) \neq 0$ and $a \in Z(A^G)$. The equality $Z(A)^G = Z(A^G)$ will follow if we apply the Lemma 5.7 of [7]. Because A * G is a strongly graded ring, and $(A * G) \# G^*$ is a semiprime ring. By theorem 2.1 and Lemma 3 of [4], it is easy to show that Z(A) * G = Z(A * G).

Theorem 2.3 Let S be the set of all regular elements of A; Q(A) be the classic quotient ring. Then $Z(Q(A)) = Z(A)S^{-1}$.

Proof For each $0 \neq x \in Z(Q(A))$, say $x = ab^{-1}(a \in A, b \in S)$. Then $\operatorname{rtann}_A(x)$ be an essential right ideal of A by $\operatorname{rtann}_{Q(A)}(x)$ is an essential right ideal of Q(A). If J is a non-zero right ideal of A, then there exists a $0 \neq d \in J$ such that $0 \neq bd \in \operatorname{rtann}_A(x)$. and $ad = 0, J \cap \operatorname{rtann}_A(a) \neq 0, a \in Z(A)$. Thus $Z(Q(A)) \subseteq Z(A)S^{-1}$. Conversely, let $0 \neq x = ab^{-1} \in Z(A)S^{-1}$, where $a \in Z(A), b \in S, J$ be a right ideal of Q(A). Then $(J \cap A) \cap \operatorname{rtann}_A(a) \neq 0, J \cap \operatorname{rtann}_{Q(A)}(a) \neq 0, a \in Z(Q(A))$. Thus $Z(A)S^{-1} \subseteq Z(Q(A))$.

3. Right uniform rings

Theorem 3.1 Let S be a finite normalizing extension of ring R. Then S is a right uniform ring if and only if R is a right uniform ring.

Proof If K is a non-zero right ideal of R, then KS is an essential right ideal of S. By Proposition 1.1 of [5], KS_R is an essential submodule of S_R . Since $KS \cong \bigoplus_{i=1}^n K^{\sigma_i}$, and $S \cong \bigoplus_{i=1}^n R^{\sigma_i}$, thus K_R is an essential submodule of R_R . Conversely, let K be a nonzero right ideal of S, and $K_i = \{r \in R | \text{ the re are } r_1, r_2, \dots, r_{i-1}, r_{i+1}, \dots, r_n \in R \text{ such that } r_1a_1 + r_2a_2 + \dots + r_{i-1}a_{i-1} + ra_i + r_{i+1}a_{i+1} + \dots + r_na_n \in K\}$. Then K_i is a nonzero right ideal of R. So K_i is essential. Say that $J = \bigcap_{j=1}^n K_i$. Then J is an essential right ideal of R.

For any nonzero right ideal T of S, $0 \neq I = \bigcap_{i=1}^{n} T_i$ is a right ideal of R(Here T_i is similar to K_i above. i = 1, 2, ..., n). Thus $0 \neq I \cap J \subseteq (I \cap J)S \subseteq IS \cap JS \subseteq K \cap T$, and K is essential.

Theorem 3.2 Let G be a finite group, and G act on a ring A. For the following statements: (1) A*G is a right uniform ring; (2) A is a right uniform ring; (3) A is a right

G-uniform ring and $(4)A^G$ is a right uniform ring; we have

- (I) $(1)\Leftrightarrow (2)\Rightarrow (3)$.
- (II) If A is semiprime and A has no |G|-torsion, then (3) \Leftrightarrow (4).

Proof By Theorem 3.1, $(1) \Leftrightarrow (2)$ and $(2) \Rightarrow (3)$ are easy. $(4) \Rightarrow (3)$ follows from [7, Lemma 5.1]. Now we show $(3) \Rightarrow (4)$. Let K be a nonzero right ideal of A^G . Then KA is a G-invariant right ideal of A, and so is G-essential. Then K is an essential right ideal of A^G .

Theorem 3.3 Let R be a G-graded ring. For the following statements: (1) $R \# G^*$ is a right G-uniform ring; (2) R is a graded right uniform ring; (3) R is a right uniform ring and (4) R_e is a right uniform ring; we have

- (I) $(1) \Rightarrow (2) \Leftarrow (3), (3) \Rightarrow (1).$
- (II) If R is a commutative ring, then $(1)\Leftrightarrow (2)$.
- (III) If the grading is nondegenerate, then $(2) \Leftrightarrow (4)$.

Proof (1) \Rightarrow (2) Let I_1, I_2 be two graded right ideals of R. Then $I_i(R \# G^*)$ is a G-invariant right ideal of $R \# G^*(i = 1, 2)$. So $I_1(R \# G^*) \cap I_2(R \# G^*) \neq 0$. Similar to the proof of theroem 2.1(2), there exists a $\beta \in G$ and $\alpha \in R$ such that $0 \neq \alpha p_\beta \in I_1(R \# G^*) \cap I_2(R \# G^*)$. So we have $0 \neq \alpha \in I_1 \cap I_2$. Hence I_1 is a graded essential right ideal.

 $(3)\Rightarrow (1)$ Let I be a nonzero G-invariant right ideal of $R\#G^*$. Then there exist $0\neq a\in R$ and $\beta\in G$ such that $ap_{\beta}\in I$, and $ap_{g}=(ap_{\beta})^{\beta^{-1}g}\in I$, for all $g\in G$. Hene $a\in I\cap R.aR$ is essential. Let J be a non-zero G-invariant right ideal of R#G, then trere exists a $0\neq b\in R$ such that $b\in J\cap R$, it follows that $0\neq aR\cap bR\subseteq I\cap J$, that is I is G-essential.

The others are easy.

Theorem 3.4 Q(A) is a right unform ring if and only if A is a right uniform ring.

Proof Let I, J are non-zero right ideals of R. Then IS^{-1} is an essential ideal of Q(A), and $IS^{-1} \cap A$ is an essential right ideal of A. Thus $(IS^{-1} \cap A) \cap J \neq 0$ and $I \cap J \neq 0$, that is I is an essential right ideal. Conversely, let k be a non-zero right ideal of Q(A). Then $K = (K \cap A)S^{-1}$, so $(K \cap A)S^{-1}$ is an essential right ideal of Q(A).

4. Socle

Theorem 4.1 Let G be a finite group, G act on a ring A. Then

- (1) $\operatorname{Soc} A \supseteq A \cap \operatorname{Soc} (A * G)$.
- (2) If A is semiprime and A has no |G|-torsion, then $SocA = A \cap Soc(A * G)$, Soc(A * G) = (Soc A) * G.

Proof (1) For any $r \in A \cap \text{Soc}(A * G)$, we have r(A * G) is a completely reducible A * G-module. By [6, Theorem 4], r(A * G) is a completely reducible A-module. Since rA is a A-submodule of r(A * G), so rA is a completely reducible module and $r \in \text{Soc}(A)$.

(2) Let $r \in \text{Soc} A$. Then rA_A is completely reducible. Since $r(A * G) = \sum_{i=1}^{n} rA\overline{\sigma}_i$, so r(A * G) is a completely reducible right A-module. Thus r(A * G) has a finite composition

series as a A*G-module. It follows that A*G is semiprime and each minimum ideal of A*G generate by idempotent elements. So that r(A*G) is completely reducible right A*G-module, hence $r \in \operatorname{Soc}(A*G)$. Conversely, for any $x \in \operatorname{Soc}(A*G)$, $(x*(A*G))_{A*G}$ is a completely reducible module, and x(A*G) is also a completely reducible right A-module. Thus xA is a completely reduible right A-module. Let $xA = \sum_{j=1}^{m} y_j A$ be a sum of

simple A-module. For each y_i , say that $y_i = \sum_{i=1}^n r_{ji}\overline{\sigma}_i$. We have a right A-module morphism $f_{ji}: y_j A \to r_{ji} A, y_i a \to r_{ji} a$. Since A*G is a free normalizing extension then the above map is well defined. If $r_{ji} \neq 0$. then $y_i A \cong r_{ji} A$, and $r_{ji} A$ is a simple A-module. So $r_{ji} \in \operatorname{Soc} A, y_i A = \sum_{i=1}^n r_{ji} A \overline{\sigma}_i \subseteq (\operatorname{Soc} A) *G, x \in (\operatorname{Soc}(A)) *G$.

Theorem 4.2 Let R be a G-graded ring. Then

- (1) If G is a finite group and R is a commutative ring, then $Soc_G(R) \# G^* = Soc(R \# G^*)$.
- (2) If R_e is a simple Artin ring and R_e has no |G|-torsion. Supp $R = \{x \in G | R_x \neq 0\} = G$, then $Soc_G(R) = Soc_R$.

Proof (1) Let J be an essential right ideal of $R\# G^*$. Then $\bigcap_{g\in G} J^g$ is an essential right ideal of $R\# G^*$. Suppose I is a graded essential right ideal of R, then $(\bigcap_{g\in G} J^g)\cap I(R\# G^*)\neq 0$, An argument similar to the Theorem 3.3, we have that there exists a $0\neq a\in R$ such that $aP_e\in (\bigcap_{g\in G} J^g)\cap I(R\# G^*)$. So $a\in I$ and $aP_e\in \bigcap_{g\in G} J^g$. Hence $ap_h=(ap_e)^h\in \bigcap_{g\in G} J^g, \forall h\in G$. It follows that $a=\sum_{h\in G} aP_h\in \bigcap_{g\in G} J^g, 0\neq a\in I\cap ((\bigcap_{g\in G} J^g)\cap R).Soc_GR\subseteq (\bigcap_{g\in G} J^g)\cap R\subseteq J,Soc_G(R)\subseteq Soc_I(R\# G^*)$. Conversely, let I be a graded essential right ideal of R, J be a non-zero right ideal of $R\# G^*$, there exists $a\beta\in G, 0\neq a\in R$ such that $ap_e\in J^{\beta^{-1}}, I\cap aR\neq 0$. Hence $0\neq (I\cap aR)P_{\beta}=((I\cap aR)P_e)^{\beta}\subseteq IP_{\beta}\cap J\subseteq I(R\# G^*)\cap J$. Thus $I(R\# G^*)$ is an essential right ideal of $R\# G^*$. Soc_I(R# G^*) is G-invariant, for every G, we have $G^g=(G^g)$ and $G^g=(G$

(2) By [8, proposition 1.11], we have $R = R_e * G.SocR = (SocR_e) * G$ by the Theorem 4.1.(2). Since $R_e * G$ is a strongly graded ring, by the theorem 4.2(1), we have $Soc_G(R_e * G) = Soc(R_e) \cdot (R_e * G) = (SocR_e) * G$. That is $SocR = Soc_GR$. For the classical quotient ring, we have

Theorem 4.3 Let Q(A) be a right quotient ring of A, S be the set of all regular elements of A. Then $(\operatorname{Soc} A)S^{-1} = \operatorname{Soc}(Q(A))$.

5. Graded radical

In this section. G is an ordered group.

Lemma 5.1 Let $m \in \text{Rad}M$. Then $m_{\sigma_n}R$ is a graded small submodule and hence is small submodule, where m_{σ_n} is the highest degree homogeneous component of m.

Proof Suppose $m_{\sigma_i}R$ is not a graded small submodule. Then $\sum = \{B \text{ is a graded submodule of } M | B \neq M \text{ and } m_{\sigma_n}R + B = M\}$. We may apply Zorn's Lemma to \sum and choose a maximal such graded submodule, call it C. There exists a maximal submodule K of M such that $K^{\sim} = C$. Then $m \notin K$. But mR is a small submodule, a contradiction. It follows that m_{σ_n} is a graded small submodule. Let K be a submodule of M, and $m_{\sigma_n}R + K = M$. Then mR + K = M, K = M. So $m_{\sigma_n}R$ is a small submodule.

Lemma 5.2 $(Rad M) \sim = (Rad M)_G = Rad M \cap Rad_G M$.

Proof For any $x \in (\operatorname{Rad} M)^{\sim} \cap h(M)$, there exists a $m \in \operatorname{Rad} M$, such that $m_{\sigma_n} = x$. By Lemma 5.1, we have $x \in \operatorname{Rad}_G M \cap \operatorname{Rad} M \subseteq (\operatorname{Rad} M)_G$, and $(\operatorname{Rad} M)^{\sim} \subseteq \operatorname{Rad} M \cap \operatorname{Rad}_G M \subseteq (\operatorname{Rad} M)_G \subseteq (\operatorname{Rad} M)^{\sim}$.

Theorem 5.3 $(\operatorname{Rad} M)_G = (\operatorname{Rad} M)^{\sim} = \operatorname{Rad} M \subseteq \operatorname{Rad}_G M$.

Proof For any $m \in \operatorname{Rad}M$, we have $m_{\sigma_n} \in (\operatorname{Rad}M)^{\sim} \subseteq \operatorname{Rad}M \cap \operatorname{Rad}_GM$. Similar to the proof of Theorem 2.1(3), we get $m \in \operatorname{Rad}_GM \cap (\operatorname{Rad}M)^{\sim}$. That is $\operatorname{Rad}M \subseteq \operatorname{Rad}_GM \cap (\operatorname{Rad}M)^{\sim}$.

Theorem 5.4 Let $R/\text{Rad}_G R$ be a semisimple ring. Then $\text{Soc}_G R = \text{Soc} R$.

Proof Since $R/\operatorname{Rad}_G R$ is a semisimple ring, so $R/\operatorname{Rad}_G R$ is graded seimisimple. It is easy to show that $\operatorname{Soc}_G R = lt\operatorname{ann}_R(\operatorname{Rad}_G R)$. And $lt\operatorname{ann}_R(\operatorname{Rad}_G R)$ is a semisimple right $R/\operatorname{Rad}_G R$ -module. So $lt\operatorname{ann}_R(\operatorname{Rad}_G R)$ is a semisimple right R-module. $lt\operatorname{ann}_R(\operatorname{Rad}_G R) \subseteq \operatorname{Soc} R$. Thus $\operatorname{Soc}_G R \subseteq \operatorname{Soc} R$. Convesely, it is easy to see.

Theorem 5.5 Let G be a finite group. R be a G-graded ring. Then $Rad(R \# G^*) = (Rad_G R) \# G^*$.

Proof First, let I be a maximal graded right ideal of R. Say that $\sum = \{J \text{ is right ideal of } R\# G^*|J\cap R=I\}$. Since G is a finite group, then $I=I(R\# G)\cap R$, and so \sum is nonempty. We may apply Zorn's lemme to \sum and choose a maximal such right ideal, call it Q. Then $\operatorname{Rad}(R\# G^*)\cap R\subseteq Q\cap R=I$, $\operatorname{Rad}(R\# G^*)\cap R\subseteq \operatorname{Rad}_G R$. For any $x\in\operatorname{Rad}(R\# G^*)$, let $x=\sum_{g\in G}a^gP_g$. Then $xP_g=a^gP_g\in\operatorname{Rad}(R\# G^*)$ for each $g\in G$. It follows that $a^gP_\beta=(a^gP_g)^{g^{-1}\beta}\in(\operatorname{Rad}(R\# G^*))^{g^{-1}\beta}\subseteq\operatorname{Rad}(R\# G^*)$, $\forall \beta\in G$. and so $a^g\in\operatorname{Rad}(R\# G^*)\cap R\subseteq\operatorname{Rad}_G R$. $(\forall g\in G)$ Thus, $x\in(\operatorname{Rad}_G R)\sharp G^*$, and $\operatorname{Rad}(R\# G^*)\subseteq(\operatorname{Rad}_G R)\# G^*$. Conversely, let I be a maximal G-right ideal of $R\# G^*$, say that $\Sigma=\{J$ is a right ideal of $R\# G^*|\bigcap J^g=I\}$. It is easy to see that there exists a maximal element Q in Σ . Since $I\cap R$ is a maximal graded right ideal, so $(\operatorname{Rad}_G R)\# G^*\subseteq I=\bigcap_{g\in G}Q^g$. Thus $(\operatorname{Rad}_G R)\# G^*\subseteq\operatorname{Rad}(R\# G^*)$.

6. YJ-injective module

Theorem 6.1 Let M be a Y J-injective right R-module. Then M is a divisible module.

Proof For any $m_0 \in M$, $r_0 \in R$ and r_0 is not a left zero divisor, there exists a positive integer n such that $r_0^n \neq 0$ and the right R-module morphism from $r_0^n R$ to M can be extended to a right R-module morphism from R to M. Define $f: r_0^n R \to M$, $r_0^n r \to m_0 r$. It is easy to see that f is a right R-module morphism. There exists an $x \in M$ such that $m_0 = f(r_0^n) = xr_0^n = (xr_0^{n-1})r_0(m_0 = xr_0$ When n = 1). Thus M is a divisible module.

Theorem 6.2 Let S be an Excellent extension of R, M_S be a Y J-in jective module. Then M_R is a Y J-injective module.

Proof For any $a \in R$, thexe exists a positive integer n such that $a^n \neq 0$, and the right R-module morphism from $a^n S$ to M can be extended to right R-module morphism from S to M. Let $f: a^n R \to M$ be a right R-module morphism. Say that $J = a^n R_{a_1} + a^n R_{a_2} + \cdots + a^n R_{a_n} = a^n S$, Suppose $F: J \to M$, $\sum_{j=1}^n x_i a_i \to \sum_{i=1}^n f(x_i) a_i$ (where $x_i \in a^n R$.) Then F is well defined. This follows F is a right S-module morphism. And there exists a morphism $G: S \to M$ such that $G|_J = F$, so $G|_R: R \to M$ is a right R-module morphism and $G|_{R} = f$.

Theorem 6.3 Let R_R be a Y J-injective module, Then J(R) = Z(R).

Proof For any $b \in Z(R)$ and $a \in R$, we have $\operatorname{rtann}_R(ab) \cap rt(\operatorname{ann}_R(1-ab)) = 0$. Since $ab \in Z(R)$, so $\operatorname{rtann}_R(1-ab) = 0$. There is a positive integer n such that for any right R-module morphism from $(1-ab)^n R$ to R can be extented right R-module morphism form R to R. Set $f: (1-ab)^n R \to R, (1-ab)^n r \to r$, then f is a right R-module morphism. So there exists a $g \in R$ such that $1 = f((1-ab)^n) = g(1-ab)^n = g((1-ab)^{n-1})(1-ab)$, that is ab is a right quasi-regular element for any $a \in R$. Thus $b \in J(R)$ and $Z(R) \subseteq J(R)$.

Conversely, Let $b \in J(R)$ but $b \notin Z(R)$. There is a non-zero right ideal I of R such that $\operatorname{rtann}_R(b) \bigoplus I$ is an essential right ideal of R. For $0 \neq c \in I$, there exists a positive integer n such that $(bc)^n \neq 0$. Set $g: (bc)^n R \to R, (bc)^n r \to c(bc)^{n-1} r(bcr \to cr)$ when n=1). It is easy to see that g is a right R-module morphism. There is $ad \in R$ such that $c(ab)^{n-1} = g((bc)^n) = d(bc)^n = dbc(bc)^{n-1}$. Since $db \in J(R)$, so there is a $k \in R$ such that db + k - kbd = 0. Then $c(bc)^{n-1} = dbc(bc)^{n-1} = kdbc(bc)^{n-1} - kc(bc)^{n-1} = 0$. Acontradiction. Thus $b \in Z(R)$.

By the Theorem 6.1 and 6.3, we have

Theorem 6.4 Let R be a right uniform right and R_R be a YJ-injective modulee Then

- (1) J(R) consists of all zero divisors.
- (2) R/J(R) is a dvisible ring.
- (3) R is a local ring.
- (4) R is an IBN ring.

References:

[1] NASTASECU C and OYSTEYEN F Van. Graded rings theorem [M]. Amsterdam, New York, Oxford: North-Holland, 1982.

- [2] YUE Chi-ming. On Von neumenn rigular rings [J]. Proc. Edinburgh Math. Soc., 1974, 19: 89-91.
- [3] KASCH F. Modules and rings, Academic Press, A subsidiary of Harourt Brace Jovanovich [M]. Publishers, London New York, 1982.
- [4] CAI Chuan-ren and CHEN Jian-hua. On graded nonsingdar rings [J]. Journd of Yangzhou Teacher's College, 1994, 14: 1-5.
- [5] PARMENTER M M and STEWART P N. Excellent extension [J]. Comm. in Alg., 1988, 16: 707-713.
- [6] FORMANEK E and JATEGAONKAR A V. Subrings of noetherian rings [J]. Proc. Amer. Math. Soc., 1974, 46: 181-186.
- [7] PASSMAN D S. It's essentially Maschke's theorem [J]. Rocky Mounta in Journal of Math., 1973, 13(1): 37-53.
- [8] CHEN M and ROWEN L H. Group graded rings [J]. Comm in Alg., 1983, 11(1): 1253-1270.

关于分次本质右理想

陈建华, 魏俊潮

(扬州大学师范学院数学系, 225002)

摘 要: 设 R 是 G- 分次,本文讨论了环 R 的相关环 R, R# G*, Re, Q(R), RG, R* G 及 R 的正规化扩张 S 的非奇异性,右一致性,右基座之间的关系。当 RR 是 YJ- 内射模时,证明了 J(R) = Z(R).