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Abstract: In this paper, we mainly prove that the category Injg of all injective Tp-spaces
and strongly algelraic maps is monadic over Top by showing that Injo is equal to the
Eilenberg-Moore category Top”, where T is the monad produced by an dual adjunction
between the category Top and the category Slat of all meet-semilattices which have top
elements and semilattice homormorphisms.
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1. Introduction

Since Stone first gave the topological representations for Boolean algebras in 1930’s
there have been massive study on adjunctions between the category Top of topological
spaces and some concrete category C. In many cases the functor F:Top — C is defined
in such a way that for any topological space X the underlying set of F(X)is O(X )-the set
of all open sets of X, and for each continuousmap f: X —» Y, F(f) = f7!: O(Y) = O(X).
The right adjoint of F is usually defined as Spec:C — Top, where for each object B of
C SpecB=C(B,2) (where 2 is an object of C whose underlying set is the two elements
set) with the subspace topology of the product space 2B. This adjunction produces a
monad T = (T,n,u) on Top and a monad R = (R,¢,v) on C. An important problem
is to characterize the Eilenberg-Moore categories Top” and Set®. For C=Set Hoffmann
([1]) showed that Set® is (up to isomorphism) the category Frm of frames (see [2] for
the definition of Frm) and Sobrel showed that Top” is the category LInj-To([3]). In [4]
Simmons carefully studied the case for C=DLat, the category of all distributive lattices.
He showed that the category Top? is the category of all algebraic spaces and algebraic
maps, and that DLat® is Frm.
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The main purpose of this paper is to describe the category Top? and Slat® for the
category Slat of all meet-semilattices. It will be shown that Top? is (up to isomorphism)
the category Injg of all injective Tp-spaces and strongly algebraic maps.

2.Basic structures and facts

By a concrete category we mean a category C whose objects are structured sets,
i.e. pairs (X,f) where X is a set and ¢ is a C -structure on X, whose morphism
f :(X,6) —» (Y,n) are suitable maps between X and Y and whose composition law
is the usual composition of maps. In other words: a concrete category is a category C
together with a faithful functor F:C — Set. A concrete functor F:C — D between two
concrete categories C and D is a functor such that F((X,£)) has the underlying set X for
each (X,£) € C. We use | X | to denote the underlying set of an object X of C.

A frame is a complete lattice which satisfies the infinite distributive law:

a/\\/:ci: V(a/\:ei).

iel el

A frame homomorphism is a map which preserves finite meets and arbitrary joins. Let
Frm denote the category whose objects are frames and whose morphisms are frame ho-
momorphisms. The category Frm is obviously a concrete category. We need the following
condition for the concrete category C we will deal with:
There exists a faithful concrete functor ¢ : Frm — C. (*)

If C satisfies (), by abusing language we use the same symbol A to denote ¢(A) for each
frame A, and use the same symbol f : A — B to denote ¢(f) for each frame morphism
f i A — B because these do not cause any confusion. Then clearly we have a functor
O:Top — C° which sends each topological space X to its open sets frame O(X) and each
continuous map f: X — Y to O(f) = f~1: 0(Y) — O(X).

We now define a functor Spec:C°? — Top. We use 2 to denote the two elements chain
when we regard it as a frame and use 2 to denote the Sierpinski space when we regard
it as a topological space. For each object B of C, Spec(B) = C(B,2), whose topology
has a subbase {o(c) | ¢ €| B |} where o(c) = {f | f € Spec(B), f(¢) = 1}. For C
morphism h : B — D, Spec(h) : Spec(D) — Spec(B) is the map which sends f € C(D,2)
to foh € C(B,2). Since Spec(h)~!(o(c)) = o(h(c)) for each ¢ €| B |, so Spec(h) is
a continuous map. It is clear that Spec is a functor. If B €C then there is a map
ep :| B |—>| O(Spec(B)) | which sends ¢ €| B | to o(c).

Now we need another extra condition on C: :

€ : B — O (Spec(B)) is a C morphism for each B € C. (%%)
It is straightforward to show that for each C object B, eg : B — O(Spec(B)) is the
universal morphism from B to the functor O (regarded as a functor from TOPP to C).

If X is a topological space, there is a continuous map nx : X — Spec(O(X)) which
sends y € X to nx(y) such that for each U € O(X),nx(y)(U) = 1 iff y € Unx(y) is
obviously a frame morphism so it is really in Spec(O(X)). From the condition () it
follows that nx is a universal map from X to the functor Spec.

Combining all the above arguments we get the following lemma.
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Lemma 2.1 Let C be a concrete category satisfying the conditions (x) and (¥x), then
the functors O:Top — C°P and Spec:C — Top® are dually adjoint to each other.

This dual adjunction produces amonad T = (T, 7, #) on Top and a monad R = (R, ¢,v)
on C.

Examples 2.2 (1)The category C=Set of all sets is obviously a concrete category
satisfying the conditions (x) and (*x). In [3] Sobrel proved that in this case TopT

the L-subcategory of Inj-Ty (the full subcategory of Top whose objects are all mjectlve
To-spaces), while Hoffmann characterized Set® as the category Frm.

(2) The category Dlat of all distributive lattices and lattice homomorphlsms is a con-
crete category satisfying conditions (x) and (*x). Simmons proved that TopT is, up to
isomorphism, the category AlgSpac of all algebraic spaces and algebraic maps and Dlat®
is again Frm (see[2}).

(3) We can also take Frm as C. In this case, by a direct verification it can be proved
that TopT is isomorphic to the category Sober of all sober spaces and continuous maps
(just notice that a retract of a sober space is sober), and Frm?® is Frm itself.

On any complete lattice L there is an relation < which is defined as follows:a < b if and
only if for each set B, if VB > b then a < z for some z € B. An element a of a complete
lattice L is called supercompact if a<a. A complete lattice is called supercontmuous if for
eachac€ L, a=Vv{z € L|zaa}.

Remark 1 (i) It was Raney who first proved that a complete lattice is supercontinuous
if and only if it is a completely distributive lattice (of course Raney didn’t use the term
‘supercontinuous lattice’. Banaschewski first used this term). However the equivalence of
complete distributivity and supercontinuity heavily depends on the Axiom of Choice. In
fact, the definition of completely distributive lattices itself involves the use of function of
choice. Thus if we want to do constructive work we should adopt supercontinuous lattices
as a replacement of completely distributive lattices. Using an equivalent condition one
can define supercontinuous lattice in a topos (see [5) for more details about constructive
complete distributivity). Fortunately in most of the cases we need the supercontinuity
instead of complete distributivity.

(ii) By the definition of « it follows that {z € L | z «0r} is empty, where Of is the
bottom element of L.

A complete lattice L is called totalcontinuous if a = V{z € L | z 9z < a} holds for
every a € L, in other words, if the supercompact elements are join-dense in L. Obviously
every totalcontmuous lattice is supercontinuous.

The relation < on L is said to be stable if a<b and a<c 1mp1y aabAc.

A stably supercontinuous lattice is a supercontinuous lattice with the two properties
(1) The top element of L is supercompact, i.e., 1y a1y and (2) < is stable. A stably
totalcontinuous lattice is a totalcontinuous which satisfies the above two conditions (1)
and (2).

Remark 2 (i) For each supercontinuous lattice L the relation < satisfies the interpolation
property, i.e., if a a b then there exists ¢ € L such that a ac <b (see [6])
(ii) If S is a meet-semilattice with a top element 1s, then the poset DS of all lower
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sets of S is a stably totalcontinuous lattice. Conversely, for every stably.totalcontinuous
lattice L there is a meet-semilattice S (e.g., the set of all supercompact elements of L)
such that L = DS.

(iii) Every supercontinuous lattice is a frame. The proof of this indication is free of
Axiom of Choice. By using Zorn’s lemma one can show that every supercontinuous lattice
is a spatial frame, i.e. every element is a meet of prime elements.

(iv) For each element a of a complete lattice L, we write 8(a) = {z |  «a}. Thus
B :L — DL is a function from L to the set of all lower sets of L.

Proposition 2.3 A complete lattice is a stably supercontinuous lattice if and only if it
is a retract of some stably totalcontinuous lattice by maps which preserve arbitrary joins
and finite meets.

In [7] Banaschewski proved that the open set lattices of injective Ty-spaces are exactly
the stably supercontinnous lattices. By Scott’s result a topological space X is an injective
To-space if and only if there is a continuous lattice L such that X is homeomorphic to
(L,o(L)) where o(L) is the Scott topology on L, so X must be sober (see [6]). Thus we
have the following lemma.

Lemma 2.4 A topological space X is an injective Ty-space if and only if it is sober and
its open set lattice O(X) is a stably supercontinuous lattice.

3.The Eilenberg-Moore category Top”

Let Slat be the category of all meet-semilattices which have top elements and maps
preserving finite meets and top elements. Slat is obviously a concrete category satisfying
conditions (*) and (*x) of section 2. Thus by lemma 2.1 there is a monad T' = (T, 9, 1) on
Top. T is the composition functor T' = Spec 0 O : Top — Top,n : id — T is the natural
transformation which assigns to each space X the map nx : X — T(X) such that for any
z € X,nx(z): O(X) — 2 with (nx(z))(U)=1iffe € U foreach U € O(X). p:T*>T
is the natural transformation which assigns to each space X the map ux : T?X — TX
such that for any f € T2X,ux(f) : O(X) — 2 is defined by ux(f)(U) = 1iff f(o(U)) =1
(recall that o(U) is an open set of TX).

An element f € Spec(S) is thus a meet-semilattice homomorphism from S to 2 which
sends the top element of S to 1. We call the elements of Spec(S) characters of S.

Lemma 3.1 Let § be a meet-semilattice with a top elements. Then the space Spec(S)
satisfies the following two conditions: (1) Spec(S) is sober; (2) O(Spec(S)) is a stably
totalcontinuous lattice.

Proof First notice that for the case of meet-semilattice,{c(z) | ¢ € S} is a basis of the
topology of Spec(S) because o(z)(o(y) = o(z A y). For each a € S the character f,
defined by f71(1) =ta={z € S|z > a} isin o(a). Now if B C § such that U,epo(z) 2
o(a), then there is a ¢ € B such that f, € 0(z).So a < z, and hence o(a) C o(z). Hence
.o(a) is supercompact because all o(z) constitute a basis of O(Spec(S)). In particular
o(ls) = Spec(S) is supercompact. As {o(z) | 2 € S} is a basis of O(Spec(S)) and
o(z)No(y) = o(z Ay) it follows immediately that O(Spec(S)) is a stably totalcontinuous
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lattice. So the condition (2) is satisfied.

Spec(S) is clearly Ty. .To see the soberness, let B be a non-empty irreducible closed
set of Spec(S). There is a set A C § such that B = n{o°(z) | = € A}, where
o°(z)=Spec(S) \ o(z). As z < y implies ¢°(z) 2 0°(y) we can assume that Ais a
lower set of S. Hence B = {f € Spec(S) | A C f~1({0})}. Define a map f4 : § — 2
which satisfies f;'({0}) = A. Obviously A # §. Suppose z Ay € A then B C (2 Ny) =
(o(z) No(y))® = o°(z) U o°(y). Hence either B C 0°(y), or B C ¢°(y), which then deduce
that either z € A or y € A. From this it follows that f4 is a character of § and obviously
fa € B. Moreover from the equation B = {f € Spec(§) | A C F71({0})} it follows that
fa is a generic point of B, i.e., cI({fa}) = B. So Spec(S) is sober.

Lemma 3.2 If X is a sober space such that O(X) is a stably totalcontinuous lattice,
then there is a meet-semilattice S which has a top element such that X = Spec(S).

Proof Let X be a topological space satisfying the above conditions. Put § = {U €
O(X) | U aU}. Then § is a sub-meet-semilattice of O(X) and contains the top element
X. There is an natural function A : X — Spec(S) which sends a € X to A, such that
X(U)=1iff a € UWU € ). Now if f € Spec(S)let W = U{V € §| f(V) =0} (W is
not necessarily in §). We show that W is a prime open set of X. In fact suppose that
U and U’ are open sets such that UN U’ C W and U € W,U" € W, then there exist
VeSVCUVZWand V' €S,V CU V' W.SoVnV' CUNU' CW. Since
VAV €S, thereisa B e S,f(B)=0and VNV’ C B. Thus f(V NV') = 0. However
V ¢ Wand V! ¢ W imply that f(V) = 1 and f(V') = 1,50 f(VnV’) = 1. This
contradiction proves that W is a prime open set. As X is sober, W; has a unique generic
point, denoted by £ . Thus we have a function { : Spec(S) — X, where £(f) = ;. For
each z € X from that § is a basis of O(X) it follows that {(A(z)) = 2. So {0 A = idx.
For each f € Spec(S),if f(V)=1foraV € §,then V € U{U € S| f(U) = 0} because
V is supercompact. Hence &5 € V, so A(£(f))(V) = 1. Conversely, if M({(f))(V) = 1, then
&f)eV,s0V ¢ U{U € S| f(U) = 0}, thus f(V) = 1. This shows that Ao{ = idgpec(s)-
So A and ¢ are one-to-one maps. In addition, for each V € 5, £(a(V)) = V,A(V) = o(V).
Thus £ and X are both open maps. Hence £ sets up a homeomorphism between X and

Spec(S).

Proposition 3.3 A topological space X is a sober space and O(X) is a stably totalcon-
tinuous lattice if and only if X = Spec(S) for some meet-semilattice § with a top element.

Corollary 3.4 For each meet-semilattice S which has a top element, the spectral space
Spec(S) is an injective To-space.

Recall that an algebra for T is a pair (X, k) with X a topological spaceand h: TX — X
a continuous map, such that hony = idx and hoTh = hopux, wherenx : X - TX and
px T*X - TX.

Lemma 3.5 Let X be an injective Ty space, then for character f : O(X) — 2 of O(X),
U{U | f(U) = 0} is a prime open set.

Proof let Wy = {U € O(X) | f(U) = 0}. Suppose that V and E are two open

— 479 —



sets such that VN E C Wy and V ¢ Wy, E ¢ W;. By lemma 2.4, O(X) is a stably
supercontinuous lattice, so there are V' € O(X) and E’ € O(X), such that V<V, E'<E and
V'€ Ws,E' € Wy.So f(V') =1, f(E') = 1. Since f preserves finite meets, F(V'NnE") =1.
On the other hand, the relation < in O(X) is stable, so V'NE'aV N E. From VN E C Wy
it follows that there exists a U € O(X) such that f(U)=0 and V'NE’ C U. But this implies
that f(V'N E’) = 0 which contradicts that f(V'N E') = 1. Hence Wy is prime.

Now by the above lemma, if X is an injective T}, space, there is a map m : Spec(0(X)) —
X, where for each f € Spec(O(X)),m(f) is the unique generic point of the irreducible
closed set W. Obviously m(f) € U € O(X) implies f(U) = 1.

Lemma 3.6 If(X,h) is a T-algebra, then X is an injective Ty-space and h = m.

Proof If (X,h)is a T-algebra, then X is a retract of TX, which is an injective To-space,
so X is an injective To-space. Now let f € TX = Spec(O(X)) be any character of O(X).
Suppose h(f) € U € O(X), then as h is continuous there is an open set V of X such
that f € o(V) C h~}(U). Then f(V) = 1. If z € V, then nx(z) € o(V), so ho nx(z) =
z € h(a(V)) C U. Hence V C U, and from f(U) > f(V) =1 we see that f(U) = 1. It
follows that h(f) € W§ where Wy = U{E € O(X) | f(E) = 0}. On the other hand, by the
definition of m(f) we see that nx(m(f)) < f, this implies that nx(m(f)) € c/({f}) holds
in the space TX. Thus m(f) = h(nx(m(f))) € h(cl({f})) C cl({h(f)}). Since m(f) is the
unique generic point of Wy and h(f) € W, so h(f) = m(f).

Lemma 3.7 For an injective Ty space X, the map m : Spec(O(X)) — X defined above
Is continuous.

Proof Suppose f € Spec(O(X)) and m(f) € U € O(X). Then, as O(X) is supercon-
tinuous, there is a V € O(X) with m(f) € V aU. So f(V) = 1, ie., f € (V). Now for
each g € o(V),m(g) € U, otherwise the relations U C W, = U{E € O(X) | g(E) = 0},
together with V' « U would imply that V C E for some E € O(X) with g(E) = 0, which
further implies g(V') = 0, but this contradicts to that g € ¢(V') which means g(V) = 1.
Thus f has a neighbourhood o(V') contained in m~Y(U). So m is continuous.

Lemma 3.8 For any injective Ty space X, the pair (X,m) is a T-algebra.

Proof By lemma 3.7 m is a continuous map. Also it is clear that m o nx = idx. Thus
we only need to prove the equation moTm = mo uy. Let f € Spec(O(Spec(0(X)))),
then m(T'm(f)) is the unique generic point of Wi, (s) and m(px(f)) is the unique generic
point of W7 ., where Wrp,5) = U{U € O(X) | Tm(f)(U) = 0} and Wiuxis) = U{U €
O(X) | px(f)U) = 0}. If we can show Wrm(s) = Wox(s) then m(Tm(f)) = m(px(f)).
Let U € O(X) with pux(f)(U) = f(o(U)) = 0. As m~(U) C o(U) always holds, so
0 = f(m™Y(U)) = Tm(f)(U) (note that Tm(f) = fo m~!). Thus Wixir) © Wrms)-
Conversely suppose U € O(X) such that Tm(f)(U) = f(m~'(U)) = 0. For any V € o(X)
with V V', we have (V) C m~Y(U). In fact if m(g) ¢ U, then U C Wy,s0 V C E for
some E € O(X) with g(E) = 0. This then induces g(V') = 0 which means g ¢ (V). Now
Fo(V)) < F(m=1(U)) = 0 implies ux(£)(V) = f(o(V)) = 0,ieV C W, ;). Since O(X)

"x

is supercontinuous,U = U{V € O(X) |V aU} C W,,, (f). Hence Wrm(s) € Wox(s)- Thus
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we proved that Wrp, 5 = W, ().
Combining the above conclusions we get the following result.

Theorem 3.9 A pair (X,h) is a T-algebra if and only if X is an injective Ty-space and
h=m.

Recall that the Eilenberg-Moore category Top” is the category whose objects are T-
algebras, and whose morphisms are T-algebra morphisms, where a T-algebra morphism
f:(X,h) - (Y,k) is a continuous map f: X — Y such that koTf = foh.

Definition 3.10 A continuous map 7 : X — Y from topological space X toY is called
strongly algebraic if the map ¥~ : O(Y') — O(X) preserves the relation «.

This terminology is justified by the fact that every strongly algebraic map is an alge-
braic map in the sense of [4].

Lemma 3.11 IfX andY are two injective Ts-spaces, then a continuous mapy : X — Y
is a T-algebra morphism from (X, m) to (Y, m) if and only if it is strongly algebraic.

Proof Suppose that v is strongly algebraic. We want to show that y om = mo T4y.
Let f € TX = Spec(O(X)). Then Tv(f) = foy~ ! : O(Y) — 2. For any U € O(Y),
if y(m(f)) € U then m(f) € y"(U), so f(y"1(U)) = 1. But T4(f)(U) = f(y~'(V)),
so 7(m(f)) € W7, ;) which implies that ¥(m(f)) € cl({Tv}). Now if we can show that
m(T(f)) € cl({r(m(f))}), then m(T7) = 7(m(f)). Suppose m(T+(f)) € U € O(Y).
If v(m(f)) ¢ U, then y~*(U) C Wy. Now, by the assumption, for any V « U,V €
O(Y),y 1 (V) a5~ Y(U), so there exists E € O(X) with f(E) =0 and y~'(V) C E, hence
Ty(f)(V) = f(7~*(V)) = 0 which indicates that V' C Wr, 5. So U C Wy, 4, which
contradicts to that m(Ty(f)) € U. Hence m(T(f)) € cl({y(m(f))}).

Conversely suppose v is a strongly algebraic map, V a U holds in O(Y'), and U{E; |
i € I} is an open cover of y~1(U). From that v is a T-algebraic map it easily follows that
for any f € TX the relation Ty(f)(V) = 1 implies m(f) € y~!(U). Define fy € TX by
fv(E) = Liff E 2 y"}(V). As Ty(fv)(V) = fr(v7(V)) = 1, so m(fv) € 771(V) €
7y~ Y U) C U{E; | i € I}. So there exists E; with m(f) € E;, which then implies that
y~Y(V) C E;. Hence y~1(V) <4~ }(U). Therefore v is a strongly algebraic map.

Theorem 3.12 The Eilenberg-Moore category TopT is the Inj, of all injective Ty-spaces
and strongly algebraic maps between them.
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