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1. Introduction

Let X be a topological space and F € C°(X). For some integer n > 2, F is said
to have an n-order iterative root if there exits f € C°(X) such that f* = F, where f"
denotes the n-th iterate of f.

The problems of iterative roots play an important role in the study of iterative func-
tional equations, i.e. the equations containing iterates of an unknown function. However,
the researches on the iterative roots of the continuous self-maps on the interval usually
limit to the strictly monotone cases or the strictly piecewise monotone cases, rarely touch-
ing upon the other casesl®). In this paper we discuss the monotone iterative roots of the
monotone increasing continuous self-maps with a level segment on the interval.

Let I = [0,1], and a,b be given real numbers, where 0 < a < b < 1. Let &,, = {F €
C°(I) : both F|[0,a] and F|[b,1] are strictly increasing, and F|[a,b] is constant }. Let
Fup = {F € &4, : Fix(F) N [(0,a) U (b,1)] = 0}. We denote E = Fiz(F)U {0,1}, @ =
max(E N [0,a)), and b = min(E N (b,1]).

Now we state the main results of this paper.

Theorem 1 Let F € &,,. Then for each integer n > 2, F has a monotone increasing
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n-order iterative root if and only if one of the following three conditions holds: (1) F(a) €
[a,8]; (2) F(a) > &; (3) F(b) < a.

Theorem 2 Let F € Fu,. Then for each integer n > 2, F has a monotone decreasing
n-order iterative root if and only if n is even, F(a) € (a,b), and one of the following
conditions holds:

(1) F(0) =0, F(1) = 1;

(2) F(0) > 0, F(1) < 1, and one of the following four conditions holds: (2.1) mg = my;
(2.2) mo = my + 1 and F™(0) > a; (23) mo = my — 1 and F™ (1) < b; and (2.4)
lmo —my| =1, F™(0) = a, F™ (1) = b, and n = 2, where m; = min{m :m > 0, F™(i) €

[a,b]}, (:=0,1).

Theorem 3  Let F € ®,\F,,. Suppose there exists a yo € Fix(F|(a,b)). Let E; =
[0,%)NE and E; = (yo,1]N E. Then for each given even integer n > 2, F has a monotone
decreasing n-order iterative root if and only if

(1) There exits an order-reserving one to one map D : E; — E,, and

(2) For any two consecutive points e, and e, in E, with e; < e, F(z) — z is positive
(or negative) on (D(ez2), D(e1)) when it is negative (or positive ) on (e1,es), and either

(F(0) - 0)(F(1)) — 1) < 0 or F(0) + 1 — F(0) = 0.

1. Necessary and sufficient conditions for F € &,, having n-order increas-
ing iterative roots

Lemma 1.1 Suppose F € &4 has an n-order iterative root f, then both f|[0,a) and
fii[b,1] are strictly increasing, i = 1,2,--- ,n.

Proof It is easy tosee. O

Lemma 1.2 Suppose F € F,, and f is an n-order iterative root of F. If there exists some
zo € [a,b] such that f(zo) ¢ [a,b], then f|[a,b] is a constant function and f(I)N (a,b) = 0.

Proof (1) If f(zo) > b, then f|[a,d] is a constant function, otherwise there exists a point
Yo € (a,d) such that f(yo) # f(zo) and f(yo) > b. By Lemma 1.1 we have F(yo) # F(zo),
which is a contradiction.

Now we claim f(I) C [b,1]. In fact, if there exist one point zy € I such that f(z) < b,
then there exist two points z1,22 € [0,a] or 21,2z, € [b,1] such that f(z;) # f(z2)
and f(z1), f(z2) € [a,b]. So F(z1) = F(z2), which is a contradition. Thus we have
f(I)n (a,b) = 0.

(2) By a similar argument, it follows that f|[a,b] is a constant function and f(I) N
(a,0) =0if f(z0) <a. O

Lemma 1.3 Suppose F € F, has an increasing iterative root. Then one of the following
three conditions holds: (1) F(a) € [a,b]; (2) F(0) > b; (3) F(1) < a.

Proof Suppose f is an n-order increasing iterative root of F. It suffices to show that
either (2) or (3) holds if (1) doesn’t holds. Assume F(a) ¢ [a,b] then both F|[a,b] and
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flla, b] have no fixed point. By Lemmas 1.1 and 1.2, we must have either f(I) C [b,1] or
fI) C [0,a). I f(I) C [bs1] then f*~1(0) > b. It follows from Lemmas 1.1 and 1.2 that
F(0) = f(f*1(0)) > f(b) > f(0) > b. By a similar argument, it follows that F(1) < a if
f(Iyclo,a. O

Lemma 1.4 Suppose F € F,,. If either F(0) > b or F(1) < a, then for each given
integer n > 2, F has an n-order increasing iterative root.

Proof It suffices to construct an n-order increasing iterative root of F. Without loss of
generality, we assume F'(0) > b.

We choose arbitrarily n points by,bz,: -, b,—1,b, € [b, F(0)] with b < b; < by < bp_; <
by = F(0). Let b; = F(bj_,) for j > n+1.

(1) For i =1,2,---,n—1, let f; : [b;,b;11] — [biy1,bi42] be a strictly increasing
continuous function with f;(5;) = b;41 and fi(bi11) = biya.

(2) For i > n we define successively f; : [b;,b;41] — [biy1,bis2] by fi = Fo f,-"_ln_H o

-1 -1

o fizo filye

(3) We define f: I — Iby f(1) =1 and f(z) = i_—1n+1 o--ofitofiloF(z)if
F(z) € [b;,b;41) for some i > n. It is easy to verify that f is an n-order increasing iterative
root of F. O

Lemma 1.5 Suppose F € Fop. If F(a) = r € [a,b], then for each given integer n > 2, F
has an n-order increasing iterative root.

Proof It is obvious that r is the unique fixed point of F|[a,b]. The proof will be carried
out in a number of stages:

(1.1) Assume r € (a,b) and F(1) = 1. Choose arbitrarily n— 1 points t,,t9, - ,t,_q €
(r,b) satisfying t; <tz < --- < tp_3 < tn,_1. Let t, = b and t; = r. For j > n we define
successively t; = F~1(t;_,).

Fori =1,---,n—1,let f; : [t;,t;y1] — [ti—1,%:] be a strictly increasing continuous
function with f;(¢;) = ti_1, fi(tit1) = ti. Let fo : [to,1] — [to, 1] be the constant function,
where the constant is 7. For i > n, we define successively f; : [t;,t;11] — [ti_1,t:] by
fi= fioflye- 0 fit 0 flwioF.

1 ifz =1;

Define f,y : [r,1] — [r,1] by fr1(z) = { fi2) i€ ftting), iz 0,1,

It is easy to verify that f,; is an n-order increasing iterative root of F|[r,1].

(1.2) Assume r € (a,b) and F(1) < 1. Choose arbitrily a real number s > 1, Let
F, :[r,s] — [r,s] be an increasing continuous function satisfying that F,|[1, s] is a strictly
increasing continuous function, F,|[r,1] = F|[r,1], F,(s) = s, and Fiz(F,) N (1,s) = 0. It
follows from (1.1) that F, has an n-order increasing iterative root f,, : [r,s] — [r,s] with
fra(r) = 7, frs(s) = s and fro(z) < z if 2 € (r,5). Let fo1 = f,|[r,1] then f,, is an n-
order increasing iterative root of F|[r,1].

(1.3) In the same way, we can prove that F|[0,r] has an n-order increasing iterative
root for : [0,7] — [0, 7] satisfying fo.(r) = r if r € (a,b).

Define f : I — I by f|[0,r] = for and f|[r,1] = f,1, then f is an n-order increasing
. iterative root of F.
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(2) Assume either » = a or r = b. By the results as above and Hardy-Boedwadt
theorem (see [2]), it follows that there exists an n-order increasing iterative root of F.

Remark 1.1  According to the proof of Lemma 1.5, F € F,;, with F(a) = r € [a,}] has
an n-order increasing iterative root f : I — I which has the following properties:(1) there
exists some subinterval [u,v] C [a,b] containing r such that f([u,v]) = {r}, both f|[0,u]
and f|[v,1] are strictly increasing, and ((0,u) U (v,1))N Fiz(f) = 0; Q) u=rifr = q,
r>uifr>a,v=rifr=2>% and r <wvifr<b;(3) f(0) = 0if F(0) =0, f(0) > 0if
F(0)>0, f(1)=1if F(1)=1,and f(1) < 1if F(1) < 1.

Proof of Theorem 1 . By Lemmas 1.3-1.5, for each integer n > 2, F|[@, 5] has a monotone
increasing n-order iterative root if and only if one of the following three conditions holds:
(1) F(a) € [a,8]; (2) F(@) > 5 (3) F(B) < .

Assume z < &* are two consecutive points in E. If f is a monotone increasing
n-order iterative root of F, then (f|[z,z*])" = F|[z,z*], and the converse also holds.
In fact, it suffices to verify Fiz(F) = Fiz(f). For any yo € I, if f(yo) > yo then
F(yo) = f™(y0) > f* Yyo) > -+ > f(yo) > yo since f is a monotone increasing function;
by a similar argument if f(y0) < yo then F(yo) < yo. Thus Fiz(F) C Fiz(f). Hence
Fiz(F) = Fiz(f). By Hardy-Béedwadt theorem ([2]), F has a monotone increasing n-
order iterative root if and only if F|[@,b] has a monotone increasing n-order iterative root.
This completes the proof. O

2. Necessary and sufficient conditions for F € F,, having n-order decreas-
ing iterative roots

Lemma 2.1 Suppose F € Fg,. If F(a) ¢ (a,b) then F has no decreasing iterative root.

Proof Assume, on the contrary, that f is an n-order decreasing iterative root of F.

(1) If F(a) ¢ [a,b], then by Lemma 1.2 we must have either f(I) C [b,1] or f(I) C
[0,a]. If f(I) C [b,1], then by Lemma 1.1 and Fiz(F|(b,1)) = 0, f|[b,1] is strictly
increasing, which is a contradition. By a similar argument, it leads to a contradition if
f(I)co,a]. '

(2) If F(a) = b, then by Lemma 1.1 and Fiz(F)N(0,1) = {b}, Fiz(f) = {b}, thus for
each z € [a,b], f(z) > b. On the other hand, by Lemma 1.2 we have f([a,b]) C [a,], so
for each 2 € [a,b], f(z) < b. Therefore f([a,b]) = {b}. Choose arbitrarily two points z;,z,
with z; # 25 in (b, 1) such that f(z1), f(z2) € (a,b), then f%(z;) = f?(z;), it follows that
F(z,1) = F(z2). Since F|[b,1] is strictly increasing, it is a contradition.

(3) By a similar argument, it leads to a contradition if F(a) = a.

Thus F has no decreasing iterative root. a

Lemma 2.2 Suppose F € Fy,, F(a) = r € (a,b),F(0) > 0 and F(1) < 1. Let m; =
min{m : m > 0, F™(i) € [a,b]},(i = 0,1). If F has an n-order decreasing iterative root
f, then (1°) n is even, |mg — my| < 1; (2°) if mg — m; = 1 then F™(0) = a implies
F™(1) = band n = 2; (3°) if mo — my = —1 then F™(1) = b implies F™(0) = a and
n=2.

Proof (1) It is obvious that n is even and r is the unique fixed point of f.
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It follows from Lemma 1.2 that f([a,b]) C [a,b]. Since F is a monotone increasing
function and f(0) < 1, F™ (£(0)) < F™i(1). It follows that f*™*1(0) € [r,b], therefore
frmtn0) € fm([{r,8]) C [a,b], thus mg < m; + 1. By a similar argument, we have
my; < mg+ 1. Hence |mg — my| < 1.

(2) Now we consider the case mg — m; = 1 and F™(0) = a. we will show that
n = 2 and F™ (1) = b. Since f*([a,b]) = F([a,b]) = {r}, f([a,b]) # [a,b], therefore
|f(a) — b] + | f(b) — a] # 0. We claim that f*™~1(0) > b. In fact, if that f"™°~1(0) < b,
then @ = F™(0) > f(b) > a, therefore f(z) = a for each z € [f"™°~1(0),b]. On the
other hand, since my > 2, we have f(0) > b, and hence there exist two distinct points
21,23 € [0,a] such that f(z;), f(z2) € [f""‘0 10), b] It follows that F(z,) = F(z;),
which is a contradiction.

Assume, on the contrary, that n > 4. Since f(0) < 1, we have f*™0~2%(1) > f*m0-1(0) >
b, thus f"™e=2%(1) < frmo=4(1) < ... < f*me="(1). It follows that F™! (1) > b, which is a
contradiction. Hence n = 2.

It follows from the claim as above that f2™0=1(0) > b, thus F™ (1) = f*™0=2%(1) >
Fr™=2(£(0)) = f*™0~1(0) > b, on the other hand F™ (1) < b, Hence F™!(1) = b.

(3) By a similar argument, (3°) holds. O

Lemma 2.3 Suppose F € Fy,. If F(a) = r € (a,b), F(0) = 0 and F(1) = 1, then for
each given even n > 2, F has an n-order decreasing iterative root.

Proof According to Lemma 1.5 and Remark 1.1, it suffices to show that F has a 2-order
decreasing iterative root. It is obvious that r € Fiz(F).

We choose arbitrarily two points d € (a,r) and ¢ € (r,b). For k = 0,1,---, let

2k = F%(d); 2akq1 = F78(a); yor = F7%(c); yars1 = F5(b). '

(1) Let fo : [21,20] — [r,yo] be a strictly decreasing continuous function with fo(z;) =
yo and fo(zo) = r; and let go : [yo,¥1] — [zo,7] be a strlctly decreasing continuous function
with go(yo) = r and go(n1) = zo.

(2) For i > 1, we define successively f; : [ziy1,2:i] — [yi—1,¥:] and ¢i : [y, yi+1] —
[z:,2,_1] by g: = ;__11 oFand fi =g}, o F.

(3) We define f : I — I by setting f([zo,y0]) = {r}, f(1) =0, f(0) = 1, and for each
120, fllziv1,2:) = fiy fllvi,yie1] = 9i- It is easy to verify that f is an 2-order decreasing
iterative root of F.

Lemma 2.4 Suppose F € Fu, F(a) = r € (a,b), F(0) > 0 and F(1) < 1. Let mg and m,
be as in Lemma 2.2, and n > 1 be an integer. Then F has an 2n-order decreasing iterative
root if mg = my + 1 and one of the following two conditions holds: (1°) F™(0) > a; (2°)
F™(0)=a, F™(1)=bandn=1.

Proof Set m = mg, then my = m — 1.

(1) Suppose that (1°) holds.

(1.1) Assume F™~ (1) < b. Choose two sequences {a;}>"! and {B;}3";! satisfying
a=0a3-1 < Q32 < - <0ap <ag=F™0),and r < By < By < - < Ban—2 =
Fm_l(l) < PBan_1 =b.

For 1 = 0,1,---,m—1and i = 0,1,---,3n — 1, put az,4; = F~ ), and azpm =
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F~™(ay); for I = 0,1,- —1landi=0,1,---,3n — 2, put bgy; = F7Y(B;); for I =
0,1,---,m—2, put b3,d+3n_1 = F‘l(,B;;n_l). Seta_y =b_y=7r. Fori=1,2,---,3n-1, let
gi : [bi—1,b;] — [ai-1, ai_3] be a strictly decreasing continuous function with g;(b;—1) = a;—2
and g;(b;) = a;—1. For i = 2,3,---,3n— 1, let f; : [a;,a;_1] — [bi_3,bi_2] be a strictly
decreasing continuous function with f;(a;) = b;_; and fi(a;—1) = b;—3. Let fi : [a1,a0] =

[a1, ao] be the constant function, where the constant is r. For j = 0,1,---,3n(m - 1) — 2,
we define successively gsnyj = faq4; 0 93_(1;—1)4-]' 0--rogsliofaliogsl;ofz) 0 Fand
Jonyj = g3n_2+J o f3 (n=1)45 © "0 f6_+1j 0 g;+1j 0 f3—+1j 0 gl’_:j o F'. We can define f3,,,,—1 and

fanm in the same way as above

Define f : I — I by f([ao, b)) = {r}; for ¢ = 1,2,---,3nm, fl|[a;,a;—1] = fi; for
i=1,2,---,3nm — 2, f|[bi-1,b8;] = g;. It is easy to verify that f is a 2n-order decreasing
iterative root of F. ’

(1 2) Assume F™71(1) = b. Choose two sequences of real numbers {a;}";! and
{ﬂ, In1 satisfying @ = agn_1 < Qan_z < -+ < oy < ag = F™(0), and F(a) < fBo < B1 <

* < B3n—2 < PBan-1 = b. '

In the same way we can construct a 2n-order decreasing iterative root of F.

(2) Suppose (2°) hold. Fori = 0,1,---,m, put a; = F~*(a); fori = 0,1,---,m—1, put
b; = F~i(b). Let go : [r, bo] — [ao, 7] be a strictly decreasing continuous function satisfying
go(r) = r and go(bo) = ao. Let fo : [ao,7] — [ao,r] be the constant function, where the
constant is 7. For i = 0,1,---,m~ 1, we define successively f; = gi"_l1 oF and g; = fi"_l1 oF,
Let f = g7, 0 F. We define f : I — I by setting f|[ao,r] = fo; fl[r,b0] = go; for
i=1,2,---,m, flla;,ai_1] = fi;fori =1,2,--- ,m—1, f|[bi-1,b;] = g:. It is easy to verify
that f is a 2-order decreasing iterative root of F. O

By a similar argument, we have

Lemma 2.4* Suppose F € Fup, F(a) = r € (a,b), F(0) > 0 and F(1) < 1. Let mg and
my be as in Lemma 2.2, and n > 1 be an integer. Then F has an 2n-order decreasing
iterative root if m; = mg + 1 and F™ (1) < b.

Lemma 2.5 Suppose F € Fyp, F(a) = r € (a,b), F(0) > 0 and F(1) < 1. Let mg and
my be as in Lemma 2.2, and n > 2 be an even. If mg = m; then F has an 2n-order
decreasing iterative root.

Proof Set m = my. It is obvious that r € Fiz(F).

(1) Suppose F’"(O) > a and F™(1) < b. Choose two sequences of real numbers
{az,},_0 and {8}, satisfying @ = @no1 < Q-2 < -+ < a1 < ag = F™(0), and

( ) .BO<ﬂ1< <,Bn—2<,6n—1:b-

For 1 =0,1,---m; ¢ = 0,1,---,n — 1 put ap4; = F}(o;) and byyy; = F7Y(5;). Put
a.1=b_y=r Fori=12,---,n-1,let f; : [a;,a;—1] — [bi—2,b;—1] be a strictly decreasing
continuous function satisfying f;(a;) = b;_; and fi(a;—1) = bi—2; ¢: : [bi1, bi] — [@i—1,ai—2]
be a strictly decreasing continuous function satisfying g;(b;—1) = ai—» and g;(4;) = a;_1.
Forj =0,1,---,n(m~ 1) we define successwely frotj =
and gny;j = fn—1+.'1 09nla4;0 0G5y 0 fijo F.

We define f : I — I by setting fllai,ai-a] = fi, fl[bi-1,b:] = g; for ¢ = 1,2,--- ,nm,

-1 - -1 -1
In-145°Fnz240 0 Fapj091450F,
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and f([ao,b0]) = {r}. It is easy to verify that f is an n-order decreasing iterative root of
F.

(2.1) Suppose F™(0) = a and F™(1) < b. Choose two sequences of real numbers
{e :"=“o1 and {; ?z_ol satisfying e = a1 < @p2< - <y <ag<r<fBy< P <<

ﬂn_z = Fm(l) < ,Bn—l = b.

' (2:2) Suppose F™(0) > a and F™(1) = b. Choose two sequences of real numbers
{a,-};‘;o1 and {g; :‘;01 satisfying a = any < F™(0) = ap2 < - < a3 < ag <7< fo <
Pr << PBn2<Pp1=0b

(2.3) Suppose F™(0) = a and F™(1) = b. Choose two sequences of real numbers
{a,-}?__."ol and {g; :-‘:'01 satisfyinga = an_1 <ap_2< - <y <a<r<fy <P < <
ﬂ'n—2 < ,Bn—-l =b.

For the cases (2.1)-(2.3), we can construct an n-order decreasing iterative roots of F
in the same way.

The Proof of Theorem 2  The sufficiency follows immediately from Lemmas 2.3-2.5
and 2.4". The necessity follows from Lemmas 2.1 and 2.2 and the following claim: Suppose
F(a) € (a,b) and one of the following two conditions holds: (c;) F(0) > 0 and F(1)=1;
(e2) F(0) = 0 and F(1) < 1, then F has no decreasing iterative root.

Assume, on the contrary, that the claim doesn’t hold. Without loss generality, we may
suppose that (¢;) holds and F(a) € (a,b). If F has a decreasing iterative root f, then it
follows from Lemmas 1.1 and 1.2 that f(0) =1 and f(1) = 0. Thus F(0) = 0, which is a

contradiction. Hence F has no decreasing iterative root. O

3. Necessary and sufficient conditions for F € P\ Fap having n-order
decreasing iterative roots

The Proof of Theorem 3 The sufficiency: Evidently, the cardinality of E > 5.
According to Lemma 1.5, Remark 1.1 and Hardy-Bedwadt theorem (see [2]), it suffices
to show that F has a 2-order descreasing iterative root.

(1) Suppose F(0) = 0, and F(1) = 1. We may assume Fix(F) = {z—k, -+, 2_2,2_1, %0,
T1,22, ,TppWithe_p < @_jpq <+ < Zp_q < T (If Fiz(F) is a countable set, a similar
method can be used). According to Lemma 2.3, F|[z_,,2;] has a 2-order descreasing
iterative root fo with fo(z_,) = z; and fo(z;) = z_;. Without loss generality, we may
assume F(z)—z < 0 for 2 € (2_3,2_;). Choose arbitrarily two points ay € (z_2,z_;) and
bo € (#1,22). For each integer I, put a; = F'(ao) and b, = F*(bo). Let hy : [a1, a0) — [bo, b1]
be a strictly decreasing continuous function with ho(ay) = by and ho(ap) = bo.

(L1) For j = 0,1,---, define successively g_; : [b_(;41),b-;] — [a_js1,a_;] and
h(i41) :la-j a_(j4n)] = [b_ (41 b-1 by g = AT} o F and h_(;11) = g=} o F.

(1.2) Forj = 1,2, -, define successively g; : [b;_1,b;] — [aj41,a;] and h; : [aj41,a;5] —
[bjsbj+1] by g; = F ok, and hj = Fog;t.

(1.3) Define f_y : [z_2,2_1] — [z1,24] by setting f_1(2_1) = 21, f-1(z-2) = 23,
and f_i|[aj41,a;5] = h; for each integer j. Define f; : [21,22] — [z_2,2_1] by setting
filz1) =21, fi(22) = z_5 and f1[bj—1,b;] = g; for each integer j.

(1.4) Define f; and f—; in the same way as above for i = 2,3, --- Jk—1.
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Put
fo(z), if 2 € [23_1,131];
f(z)=4 f-i(z), fze [Z_(i41)p2—i), i =1,2,--- k- 1;
fi(z), fze(ezip1],1=1,2,---,k-1
It is easy to verify that f is an 2-order decreasing iterative root of F.

(2) Suppose F(0) > 0 and F(1) < 1. Choose s,t with s < 0, > 1. Define F,, :
[s,t] — [s,t] by Fu|[0,1] = F, F,(s) = s, Fu(t) = t, Fix(F,) = Fiz(F) U {s,t} and
both F,|[s,0] and F,|(1,t] be strictly increasing. According to the conclusion as above,
Fy has an 2-order decreasing iterative root fy; : [s,t] — [s,t] such that both f,|[s,z_4]
and f,|[21,t] are strictly decreasing. Put fo; = f.|[0,1], then fo; is an 2-order decreasing
iterative root of F = Fyu|[0,1].

The necessity: Suppose f is an n-order decreasing iterative root of F, then n is even
and yo is the unique fixed point of f.

For each e € Ey, put D(e) = f(e), then D(e) > f(yo) = yo and Fo D(e) = Fo f(e) =
foF(e) = f(e) = D(e) so D(e) € E,. Thus we obtain an order-reserving one to one map
D : Ey; — E,. Aussme e; < e are two consecutive points'in E, where either e; or e, is not
yo- If F(z) — z is positve ( or negative) in (eq, ez), then f(y) € (D(ez), D(e1)) for any y €
(e1,€2). Since F(y) >y ( or F(y) < y), it follows that F o f(y) < f(y) (Fo f(y) > f(v)),
so F(z) — z is negative (or positive) in (D(ez), D(e1)). Since @ < yo < b are adjacent

points in E, F(z) — z is positive in (@,yo) if and only if F(z) — z is negative in (yo, ).
Iff(O):ladf()._O thenF()_OandF()—l If f(0) < 1 then F(0) =
(0) > f~~1(1) > o, F(1) = f~(1) < f(0) < 1; By a similar argument, it holds
(F(1) -

1
that (F(0) — 0)

1 ) < 0 if f(1) > 0. Hence either (F(0)—0)}(F(1))-1) < 0 or
F(0)+1-F(0)=0. O
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