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In [1], Yu. I. Manin introduced many algebra structures in categories. In this paper,
we will discuss the tensor coalgebras in cotriangular Hopf algebras comodule category and
give the Hopf algebra structures of the tensor coalgebras in cotriangular Hopf algebras
comodule category.

Throughout, (H, 1,7, A, ¢, S) denotes a Hopf algebra over a field K. M¥ denotes the
category of right H-comodules. For M € Obj(M¥), the structure map of M is denoted by
MM — MRH;m+—— Y m®@m), For K,define ¢y : K — KQH;k — kQ1y.
Then, K € Obj(M#"). For M, N ¢ Obj(MH), define oMgN - M QN — M@NQ®
Hm@n+— Y m @n gm0, Then, M ® N € Obj(MF).

A Hopf algebra H is called coquasitriangular (or dual quasitriangular, see [2]) if there
exists a bilinear form R : H @ H — K, which is convolution invertible in Homg(H ®
H, K), such that for all h,k,l € H,

> R(hgt) ® k) kyhizy = 3 hiayker) R(hga) ® kzy); (1)

R(h®kl) =) R(hy)® )R(h(z) ® k); R(hk ® 1) = Y RR®In)R(k® ). (2)

Lemma 1B If (H, R) is a coqusitriangular Hopf algebra, then

R(h ® 1) = €(h) = R(1x @ h); (3)
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> Rk ® k() R(hz) ® 1)) B(kez) © L(z))
=Y R(kgy ® l1))R(ha) ® L(z))R(k(z) ® k(3))- (4)
Let (H, R) be a coqusitriangular Hopf algebra and M, N right H-comodules. Then,
T:M@N — N M;men— > n®@mORm" gn) (5)

is a right H-comodule isomorphism. And, M is a braided monoidal category with a
braiding ¥ and H is cotriangular if and only if M¥ is symmetrically monoidal (see [2] or
[4]). For V4, V3, -+, V,, € Obj(MH),

¥;: 18- 0Vi®---8V;0- 0V —110---0V;0---0Vi® -8 Va

denotes the H-comodule morphism which sends v1 ® - - Q@ v; @ - ® v; ® --- @ v, to
Srne---® vgo) R--® vgo)R(vfl) ® 0;1)) ® -+ Q@ v,. Al ¥;;’s are called H-transposition.
Then, by Theorem 1.16 in [2] and Theorem 10.4.2 in [4], we have the following.

Lemma 2 Let V4,Vs, Vs € Obj(MF). Then,
W93 = UpWyp, Uyp3 = U203, ¥2 = id, (6)
U1oWo3Wyp = WaaWy5Was, (7)

where U1 55 : Vi® (V38 Vs) — (V28V5)®V1; 018 (v20v3) — S (v20v3)® @vi” R(v{" ®
(v2 ® v3)(V) and ¥, 5 is similar.

The ideas of an algebra and coalgebra in the category M# is just the usual one. But
now we use the morphisms in M¥ and H-transposition ¥;; instead of the linear maps
and transposition 7;; respectively. Throughout, all algebra structures are in MH, We can
obtain easily the following lemmas.

Lemma 3 Let (A,pu4) and (C,Ac) be algebra and coalgebra in M* respectively. Then
V(id Q@ pa) = (pa ® id)¥23¥12, ¥(pg @ id) = (id @ pa)¥12¥23; (8)

(ld ® Ac)\I’ = \1’12‘1’23(AC ® 1d), (AC ® ld)‘y = \F23\I’12(id ® Ac) (9)

Lemma 4 Let M € O||(MF). Write M}; = Comy(M, K), the set all H-comodule
morphisms from M to K. Then,
(1) My is a right H-comodule via

oMy My — M ® Him™ — m” @y, (10)

where g is a group-like element in H.
(2) If g = 1y, then the K-linear injection

pM  Mf ® My — (M @ M)y; p(m” @ n™)(m @ n) = m™(m)n"(n) (11)

is an H-comodule morphism.
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(3) Let N € Obj(M¥) and f: M — N be a morphism in M. Write
J*:Nff — Mp;n® — n*f. (12)
Then, f* is also a morphism in MH.

Definition 5 Let W € M*. A tensor coalgebra in M¥ on W consists of a coalgebra C
in MH together with a morphism pw : C — W of M¥ such that if B is any coalgebra in
MH and f : B — M any morphism of MH | then there is an unique coalgebra morphism
g : B — C making the following diagram commutative

W — C
Pw

f1 /g

B

that is, pwg = f.
Obviously, in the sense of isomorphism, the tensor coalgebra on W is unique. Thus,
TC(W) denotes the tensor coalgebra on W. Now, we discuss the existence of (T (W), pw ).
Let W € M (T(W),iw) be the tensor algebra on W, (T(W))% the dual coalgebra
of T(W). Then there exists a morphism &jyi : (T(W))y —° (T(W))y —'H W} of MH.
By the way in (5, 6.4], we can proved similarly the following lemma.

Lemma 6 (1) T(W)} = (T(W))%-
(2) Let V be an H-sumcomodule of W. If TC(W) exists, then TC (V) exists.
Thus, we have te following results.

Theorem 7 Let W € M¥. Then the tensor coalgebra on W exists.

Proof Since W € M¥ W} € M. By the first part of lemma 6 we know that TC(W5)};
exists. Since ¥y : W — (W3 )y Tw(m)(f) = f(m) is injective, then TC(W) exists by
(2) of Lemma 6.

We now discuss Hopf algebra structure of 7€ (W).

Let W € M¥ and (TC(W),ATC(W),eTc(W),pW) be the tensor coalgebras on W. Set.

p:TWYRTC(W) — Wiz @y +— ercw)()pw(2z) + excw)(z)pw(y); (13)
' n:K — W;k+— 0; (14)
S (T°(W))°F — Wiz — —pw(2), (15)

where TC(W)®TC (W) is a brained tensor product with structure maps, Arcwygre(w) =
(ld QY Q® ld)(ATC(W) ® ATC(W)) and €TC(W)®TC(W) = ETC(w) ® eTc(W)‘ (TC(W))OP
denotes the brained opposite coalgebra of TC (W) with structure Arewyyor = YAqcw)
and Errcwyopr = Erc(w). Then, p is a morphism in MH, 1In fact, for h € H,z,y €
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TC(W).

(4@ id)g(z ® y) = (1 ®id)(Y = 8y @ 2y
=Y (o) (¥ N)pw (@) + erow)(z)pw (¥1?)) ® 2Ny
= Z €TC(W)(3I)PW(‘B(O)) &M + z €TC(W)(‘°)PW(y(0)) ®y™
= excun)(¥) 3 pw(z®) ® 2 + excwy(2) Y prew)(¥©) @ y
= ercw)(¥)opw(2) + ercw)(2)épw (v)
= ¢(exow)(¥)pw(2) + excw)(¥)pw(y)) = du(z @ ¥).

'Hence, pis a an H-comodule morphism. It is known easily that  and S are also morphisms
in MH, By the U. M. P. of T¢(W). There exist coalgebra maps

prew) : TC(W) ® TC(W) — T(W) (16)
nrew) : K — TC(W) (17)
Srcuwy  (TC(W))°P — TC(W) (18)

such that pwprcw) = m,pwircw) = M pwSTcow) = S respectively. Therefore, we
obtain the Hopf algebra structure of the tensor coalgebra TC(W). O

Theorem 8 Let W € MH Then (TC(W), ﬂTC(W)’ nTC(W)'» ATC(W), ETC(W), STC(W))
are all Hopf algebras in M¥ and S%C(W) = idpew)-

Proof We only prove that Stc () is antipode of TC(W). Since Se(wy is a coalgebra
map, for z € T(W), we have
pw(Srcw) *id)(2) = pwarew)(D_ Srew)(2@)) © 2(2))
= p(Y_ Sreawy(zq) ® 2(z))
=Y (erew)(Stew)(2(0))pw(2(2)) + excw)(2(2))pw (STe (w)(2(1))))

=Y (e@ewyor(za))pw(2(2)) + Srew)(eew)or(z@))pw(z))))

= pw(z) + pwSrcw)(2z) = pw(z) + 5(z) = 0

= n(epcw)(2)) = pwircwierew)(2)-
It is easy to see that Te (W)ETE (W) is a coalgebra map. Hence, for the H-comodule map
f = pw(Stc(w) *id), by the uniqueness of g in Definition 5, S7c(w) * id = TC(W)ETE (W)-
Similarly, we can prove that id*Spc(w) = nrcw) Ercw)- Therefore, Syc(w) is a antipode
of T¢(W). O
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