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An Inverse Problem for a Nonlinear Evolution Equation *
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Abstract: This paper deals with an inverse problem for the unknown source term in
a nonlinear evolution equation. Firstly, the authors change the initial boundary value
problem (IBVP) for the equation into a Cauchy problem for a certain nonlinear evolution
equation. Secondly, using the semigroup theory, the authors establish the existence and
uniqueness of the solution for the inverse problem. Finally, they take advantage of the
fixed point method for some contraction mapping and get the solvability of the inverse
problem for the evolution equation.
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1. Introduction

In this paper, we want to discuss the following inverse problem of a multidimensional
nonlinear evolution equation

Luy = bAu + f(z,t,u) + o(t)p(z,t), - (z,t) € 2 x (0,7T], (1.1),

where
Lu=(I- A, (1.2)

with the following initial value and boundary value conditions:

u(z,0) = uo(z), z e, (1.3)
u(z,t) = 0, (z,t) € 99 x (0,T), (1.4)
u(zo,t) = r(t), 2o N,0<t<T, (1.5)
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where the bounded domain @ C R® = R' x R x ---R! and R! = (—o0,+00). 09 is
the smooth boundary of Q. I is the identity transformation, A is the n-dimensional
Laplace operator. The diffusion coefficient b > 0 is a constant or a bounded continuous
function on Q x R*, f(z,t,p) is a nonlinear smooth function which has been defined on
2 x Rt x R}, Rt = [0, +00); ¢(t), uo(x) and r(t) are given functions,but u(:c t) and p(z,t)
are unknown functions.

The main aim of this paper is to look for the function pair {u(:c,t),p(:c,t)} to satisfy
the inverse problem (1.1)-(1.5).For this purpose, we shall make use of semigroup theory
and fixed point method which are different from the arguments in documents [1-3)].

To simplify the discussion, we utilize the same symbol H k(Q) to stand for the usual
Sobolev space [4, 5].Specially, we say H%(Q) = L?(Q) and HJ*(Q) is the closure of C5°((2)
in H™(Q) (also c.f. [4] or [5]).

Besides, we introduce the inner product (-,-) and the norm || - || as follows
L .
(wo)o = [ wode,ulle = ( 3 ID°uR)E, lullzwa) = ess suplul.  (1.6)
: <k =eh

Throughout of the discusion of this paper, we suppose that for any { = (&1,---,&n) €
€ # 0, there exists a positive constant g, such that

S beit; > plel, V(e,t) € O x BY. (L.7)

i7j=1

This paper is organized as follows. In section 2, we discuss the Cauchy problem of the
equivalent equation of evolution to the direct problem (1.1)—(1.4). We make use of the
sernigroup theory and establish the existence and uniqueness of solutions of the Cauchy
problem. In section 3, we state and prove the main result of this paper.

2. The equivalent cauchy problem and some lemmas

In the following statements, we always assume that u(-,t) = u(t); p(-,t) = p(t);b(-,t) =
b(t) = b; f(-,t,u(-)) = f(t,u(t)). It is easy to know L = I.— A is a bounded linear operator
fort > 0. So we can infer that there is the inverse operator L™!. We denote A = L™1b(t)A.
In this way, we can rewrite (1.1)—(1.4) as the following equivalent Cauchy problem of the
evolution equation

d:ﬁt) + Au(t) = L7 f(t,u(t) + L7 (t)p(t), (2.1)

u(0) = uo. (2.2)

In order to solve problem (2.1) and (2.2), we consider a more general abstract Cauchy
problem

fd_g_(t_l + Au(t) = f(¢), Vt > 0; with u(0) = uo. (2.3)
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It is known that there are many perfect results about Cauchy problem for linear evo-
lution equation. We refer to [4, 6] and other documents. Here, we quote one lemma of [6].

Lemma 1 Assume that H is a Hilbert space, then —A is the infinitesimal generator
of some Cy-contractive semigroup S(t) on H, if and only if A not only is a dense closed
operator, but also is an accretive operator in H, besides, there exists a A > 0, such that
Al + A is a covering mapping.

We shall prove the following important lemma.

Lemma 2 Suppose u € H}(Q), f(t) € C([0,t); H3(Q)),L =1 - A,A = L7 b(t)A. Then
there is the following conclusion

(i) Cauchy problem (2.3) has a unique solution u(t) € C*([0,T]; H}(Q))NC([0, T); HL(Q)
H%(Q)) and u(t) = S(t)uo + f§ S(t — 7)f(7) dr, where S(t) is a Cy-contractive semigroup
with its infinitesimal generator — A.

(ii) The above semigroup S(t) is an analytic semigroup in a certain fan region Ag.

Proof (i) Denote D(A) = H}(Q) N H2(Q). According to [6], D(A) is dense in H3(R).
For any g € H°(Q) = L*(Q), we consider
(AL 4+ b(t)A)u = g. (2.4)

By the direct computing method, we can see, for all A > 0, the inner product (ALu +
b(t)Au,v) can be extended onto Hi(2) x H}(f), such that this inner product has the
following continuous bilinear form

B(u,v) = A/ (uv + VuVv)dz +/ b(t)VuVude, Vu,v € H, (2.5)
Q Q

where (Vu) satisfies V(Vu) = Au with V is the n-dimensional gradient operator. On
the basis of the assumption of b(t), we know B(u,v) is a forced bilinear(¥], i.e., for any
u € H}(Q), there exists a constant K > 0, such that

B(u,u) > K|lul)f. (2.6)
So from Lax-Milgram lemma and the smooth behaviour of 92, we infer that equa-

tion(2.4) has a unique solution v € H}(Q) N HZ(). Set ¢ = Ly, we apply L~! to both
sides of (2.4), then we get

(M + A)u = ¢, with A = L7'(¢)A. (2.7)

It is easy to see, for any ¢ € H}(Q), (2.7) has a unique solution v € H3(Q2) N H%(Q).
That is to say AI + A is a covering mapping.

For any u € D(A), any v € H}(Q), from A = AA + bA and (—Awu,v)o = (Vu, Vv)o,
we get (Au,u); = (Au,u)o + (VAu, Vu)o = (AAu,u)o + (bAu,u)s + (VAu, Vu)y. By the

given condition, we deduce that

(Au,u); = b(Au,u)e > 0. (2.8)
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Therefore, A is an accretive operator 6,

According to Lemma 1 and the basic theorem (c.f.[6]), we can deduce —A is the in-
finitesimal generator of the Cy-contractive semigroup §(t).On this reason, Cauchy problem
(2.3) has a unique solution u € C([0,T]; H3(Q)) n C([0,T]; H3(Q) N H(Q)) and u(t) can
be expressed as u(t) = S(t)uo + f§ S(t — 7)f(7)dr.

(ii) On the basis of the proof of (i) and Theorem 5.2 of Chapter 2 of [6], we need only
to prove that there exists a 6 € (0, 7) and a constant K* > 0,such that

p(-A) D= ¥ {A|]argA| < £ + 6} U {0},

where p(—A) is the predicative set of — A with its preradical R(A, — A) satisfies the following
relation || R(A, —4)|| < &7, VAex, A#£0.
In fact, if A = 0 + ir,0 > 0,i = /-1, then for any u,v € H}(9),

Re((Au,u); + My, u)r) = (bAu,u)o + o(u,u); > K|ju|l?. (2.9)
where K > 0 is a constant. Note the relation (2.8), we see

(A, v)1 + A, v)a] = [(Aw,v)o + A(u, v} < [(BAw, v)o] + [Ml[[uflsflvfl,  (2.10)

(A, v)o| < / 1b]| V| Vo] de. (2.11)
9]

By the estimated method of the basic inequality and (2.11), we can deduce that there
exists a positive constant K, satisfies

[(bAu, v)o| < Kifluflaflvfla. (2.12)
So from (2.10) and (2.12), there is a constant K, > 0, such that
[(Aw,v)1 + A, v)1| < Kaflull1]lv]ls. (2.13)

By (2.9), we see the differential operator AI + A : H}(Q) — H}(R) is a covering mapping
for A\=0+1ir,0 > 0.

If u# 0,u € Hj(2), then (AT + A)u # 0. That is to say, A\ + A is a one to one
mapping.

From (2.12) and (2.13), we may know AJ + A is a bounded operator. So we get the
existence and boundedness of (Al + A)‘1 on the basis of the inverse theorem of bounded
linear operator.

Specially, if A = 0, then 0 € p(—A), and by (2.9), we can also get ||(A] + A)ulls||ull; >
oflull?. It follows that

lo(A + 4)7Y < 1. (2.14)
On the other hand, there is [|[Im{(AI + A)u, v)1]| = |7|||u||?. So we get
(AL + A, uwhi [l = Irlllullf, Le, (AL + AJully = [7|[|ull.
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It shows
Im(AT + A)7Y| < 1, for A = o +ir,0 > 0. (2.15)

In (2.15), let A = a = i7, then ||(al+ 4)7!|| < ]%[ Hence, we are easy to see for |o|/|7] < 1,
-1y _ -1 |U|
(A — a)(al + A)7Y| = [lo(al + A)7Y < <t
iy ¢ (Lo =aly ™
I = (A= a)(al + A) 1 1||S( la| ) .

The above relation is equivalent to

IAL + A)7H = ll(ad + A)7HI = (a = A)(ed + A)7H7H|

-1

LRl Ll

e la] IR

In particular, let 6 = arctgl = §, then we see (A + A)™" is exists for |o]/|7] = tgf = 1.
Because 0 € p(—A), then we have

(2.16)

p(—A) > {A | arg)| < g + 8} U {0}. (2.17)

In addition, by (2.16) and (2.17), for A # 0 and A € {A | |argA| < 3%}, there is the
following inequality ||A(AI + A)7!|| < 11!,;:,'11(1 —lal/|7])"* < 2(1 = |o|/|7])"!. Denote
K* =2(1~lol/Ir])™*, then [[(AI + A)7Y|| < - So we proved (ii).

3. Main Result and its Proof

In this section, we state and prove the following main conclusion of this paper.

Theorem Let f(z,t,p) € C(Q x Rt x R') and f(z,t,p) be bounded. Assume that for
any u € H}(Q), f(-,t,u) € C([0,T); L%(Q)) and the following conditions be satisfied

(1) 1F (¢t wa) = F(ot u2)llo < Nlua — uzllo. (3.1)
Where N is a positive constant;
(ii) uo(zo) = r(0), for anyug € Hj(Q). (3.2)

(ii) ¢(t) € C1([0,T1), (t) # 0,t € [0,T]. (3-3)

Then the inverse problem {(1.1)-(1.5)} has a unique solution {u(z,t),p(z,t)} asT > 0 is
an appropriate small number.

To prove this theorem, we observe and study an equivalent integral equation. we
assume that S(t) be the Cy-contractive semigroup with the generator —4A = —L71bA =
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—(I - A)"1bA. From lemma 2, Cauchy problem (2.1) and (2.2) can be returned to the
following Volterra integral

u(t) = S(t)uo + /: S(t - 1)L f(z, 7, u(T))dr + /01 S(t— 1)L p(7)p(z,T)dr. (3.4)

For each u € H}({2), we take the derivative for t on both sides of (3.4). Note the fundamen-
tal properties S(0) = I, S(t)uo is the solution of the homogeneous Cauchy problem!4],
and make use of the additional condition (1.5), we can deduce

#(0) =240 = () o + L7 (o t,u(t) + L p(0)p(e, 1) -

/: S(t— )AL ' f(z,7,u(r)) dr — /Ot S(t— 7)AL 'p(T)p(z,T)dr. (3.5)

Putting the differential operator Ly~1(t) on both sides of (3.5), then we get
Lo (t)(r'(t) + S(t)Auo) ~ Lo~ (1) L7 f(=, t,u(t))+
Le™1() /0 "S(t - )AL (e, 7, u(r)) drt
L1y /0 "S(t - )AL (r)p(e, 7) dr
= p(z,1) ¥ p(t). (3.6)

To simplify the expression of p(t) in (3.6), we introduce some symbols of the following
differential operators

Po(t) = L™ (1)(r'() + S(t)Auo), pa(t) = =7} (t), pa(t,7) = Apn(t)S(t~ 7),

e3(t, 7) = @2(t, 7)e(7), Qo(t) = S(t)uo, pa(t,7) = S(t —7)L7,
st ) = pa(t — )7 H(2).

Therefore, the inverse problem {(2.1),(2.2),(1.5)} can be changed into the following equiv-
alent integral equations

p(t) = 2o(®) + 1O (et, ) + [ a(ts )i (el ar + [ sty (e (3.7)
and
(6, u(t)) = f(z, ¢, Qolt) + /0  oalt, ) f(z, 7 u(r))dr + /Ot<p5(t,7')p(7')d7'). (3.8)

Denote D = {(p, f) | (p, f} € C([0,T]; L*(22) x L*(R))}, and for any (p, f) € D, define
a norm ||(p, f)|| = trel%%]{ﬂpﬂo, Ifllo}. With the exception of this, we define a mapping

A:(p, )| = (p, f)for (p, f) € D. Where fand f are determined by the right terms of (3.7)
and (3.8) respectively.
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It is easy to know A is a mapping of D onto D. Notice that S(t) is a Co-contractive
semigroup, then we see, for any t € [0,T), L1 = (I — A)7! is a bounded linear operator.

t = t (¢, 1), = 2,3,4,5}, then f = (p1, f1),v2 =
Note = max {llex(O)ll lei(t, ). 5}, then for v = (p1, f1), vz

(p2, f2) € D, by the condition (3.1), there is
[1£1(t) ~ £a(t)l| < 2MNT||vy ~ vs. (3.9)
Put (3.8) into (3.7), we have

p(t) =po(t) + p1(t)f(z,t, Qolt) + /Ot pa(t, 7)f(z, 7 u(r))dr + /(: es(t, )p(T)dr)+

/Ot p2(t,7)f(z, 7, u(r))dr + /: e3(t, 7)p(r)dr.
Similar to (3.9), there is
1P1(2) — P2(t)l| < 2MT(MN + 1)[lv1 — 2], (3.10)
where (5;, f;) = A(pi, fi) = Avi,7 = 1,2. From (3.9) and (3.10), we can infer that
| Avy — Avs|| < 2M N*T||vy — va|.

The above inequality shows that as T < Z_A/II'N“’ the mapping A is constractive. So
by the fixed point principle, there exists a unique fixed point v, such that Av = v. This
means inverse problem {(2.1),(2.2),(1.5)} (i-e., inverse problem {(1.1)-(1.5)}) has a unique
solution {u(z,t),p(z,t)}.

The proof of the solvability of the inverse problem {(1.1)-(1.5)} is completed.
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