A Degree Condition for the Circumference of a Graph *

ZHU Yong-jin¹, ZHOU Jie²

- (1. Institute of Systems Science, Academia Sinica, Beijing 100080, China;
- 2. Dept. of Math., Northeast Normal Univ., Changchun, Jilin 130024, China)

Abstract: We present a new condition on the degree sums of a graph that implies the existence of a long cycle. Our result is a generalization of the previous one of N.Dean and P.Fraiss.

Key words: path; circumference; key-pair.

Classification: AMS(1991) 05C15/CLC O157.5

Document code: A Article ID: 1000-341X(2001)01-0060-03

1. Introduction and preliminary lemmas

Throughout, G will be a 2-connected simple graph with degree sequence

$$d(v_1) \leq d(v_2) \leq \cdots \leq d(v_n)$$
.

For $j, k \in \{1, 2, \dots, n\}$, if j < k, $v_j v_k \in E(G)$, $d(v_j) \le j$ and $d(v_k) \le k - 1$, then we call (j, k) a key-pair of G. Let $P = x_1 x_2 \cdots x_k$ be a path of G, where $x_i \in V(G)$. We may fix for P an orientation and set $x_j^+ = x_{j+1}$ for $1 \le j \le k - 1$ and $x_j^- = x_{j-1}$ for $2 \le j \le k$. Define $X^+ = \{x^+ \mid x \in X\}$ and $X^- = \{x^- \mid x \in X\}$ for each subset $X \subseteq V(P)$. The length of a longest cycle of G, or circumference of G, is denoted by C(G). The main result of this note is the following theorem:

Theorem 1 Suppose G satisfies the property that for any key-pair (j, k) and a given positive integer m, we have

- (1) $d(v_j) + d(v_k) \ge m+1$, if $j + k \ge n$;
- (2) $d(v_j) + d(v_k) \ge \min(k, m)$, if j + k < n and $d(v_{k+1}) \ge \frac{m}{2} + 1$ when $d(v_j) + d(v_k) = k$. Then $C(G) \ge \min(m, n)$.

By considering an example given in [2], we can see that Theorem 1 is a generalization of a similar result of N.Dean and P.Fraisse [2].

To prove Theorem 1 we need the following well known lemma.

Lemma 2 Let $P = x_1x_2 \cdots x_k$ be a path of 2-connected graph G. Then $C(G) \ge \min(|P|, d_P(x_1) + d_P(x_k))$.

^{*}Received date: 1998-01-08

2. Proof of Theorem 1

Assume that Theorem 1 is false, and let G be a maximal graph that satisfies the hypothesis but not the conclusion. So we have C(G) < m. Let $P = v_j \cdots v_k$ be a longest path of G, then $|P| \ge m$, the neighbors of v_j and v_k lie on P and $v_j v_k \notin E(G)$. We may assume that j < k. Among the family of longest path in G, we choose P so that k is maximum and among the longest path with k maximum, we choose P so that j is maximum. So we have

Fact 1 For a vertex v_i of P, if $v_i^+v_i \in E(G)$ (or $v_i^-v_i \in E(G)$), then $i \leq j$ $(i \leq k)$.

Fact 2 $d(v_j) \leq j$ and $d(v_k) \leq k-1$.

Fact 3 j + k < n and $d(v_j) + d(v_k) \ge k$.

By Fact 2, we have that (j,k) is a key-pair. Let $P = v_j \cdots v_k = x_1 \cdots x_{m'}$, where $x_1 = v_j$ and $x_{m'} = v_k$. We have $|P| = m' \ge m$. Suppose $m' \ge m + 2$ (for $m' \le m + 1$, the proof is similar).

Set $N = N(x_1)^- \cup N(x_{m'})^+$. Then, by Facts 1 and 3, we have, for $v_i \in V(G) \setminus N$, $i \geq k+1$ and $d(v_i) \geq \frac{m}{2}+1$. We need to consider the following two cases:

Case 1 If $x_1x_r \in E(G)$ (or $x_rx_{m'} \in E(G)$) $(3 \le r \le m'-3)$, then

$$N(x_{r-2}) \subseteq V(P) (\text{or } N(x_{r'+2}) \subseteq V(P)).$$

Case 2 If $x_1x_r \in E(G)$ and $x_{r'}x_{m'} \in E(G)$, then (1) $x_{r-2} \in N$ or $x_{r'+2} \in N$ when $2 < r \le r' \le m'-1$. When r-2 > r' and 2 < r', r < m-1, we also have (2) $x_{r'-1} \in N$ or $x_{r-2} \in N$, (3) $x_{r'-2} \in N$ or $x_{r-2} \in N$, (4) $x_{r'+2} \in N$ or $x_{r+1} \in N$ and (5) $x_{r'+2} \in N$ or $x_{r+2} \in N$.

Let $t = \max\{i \mid x_1x_i \in E, 2 \le i \le m'\}$ and $t' = \max\{i \mid x_ix_{m'} \in E, 1 \le i \le m'-1\}$. For $t \le t'$, we can get a contradiction from the discussion in Case 2. Suppose t > t'. If $x_1x_r, x_{r'}x_{m'} \in E, r > r'$ and each vertex of $\{x_{r'+1}, \dots, x_{r-1}\}$ is not adjacent to x_1 or $x_{m'}$, then we call $P[x_{r'}, x_r]$ an intersect interval of P. We have

- (a) There exists only one intersect interval on P.
- (b) $\{x_2, \cdots, x_{t'}\} \subseteq N(x_1)$ and $\{x_t, \cdots, x_{m'-1}\} \subseteq N(x_{m'})$.
- (c) $E(\{x_{t'+1}, \dots, x_{t-1}\}, \{x_1, \dots, x_{t'-1}\}) = \emptyset$ and $E(\{x_{t'+1}, \dots, x_{t-1}\}, \{x_{t+1}, \dots, x_{m'}\}) = \emptyset$ Assume now that $P[x_{r'}, x_r]$ is the unique intersect interval of P. We have r' = t' and r = t. Put $P_0 = P[x_t, x_{m'}]^{-1}P[x_1, x_{t-2}]$, we have, for every $v_f \in N_{P_0}(x_{m'})^{-}$, $f \leq k$,

$$N(x_{t-2}) \setminus V(P_0) = \{x_{t-1}\} \text{ and } N_{P_0}(x_{t-2}) \subseteq \{x_{t'}, \cdots, x_{t-3}\}.$$

Let $x_{t-2} = v_i$. Then $v_i \notin N$ and $i \geq k+1$. If there exists $x_r \in N_{P_0}(x_{t-2})^+$, $x_r = v_f$ and f > i, then put $P'_0 = P_0[x_{m'}, x_r^-]P_0[x_r, x_{t-2}]^{-1}$, P'_0 has the same property as P_0 . Take the step repeatedly and also write the final path as $P_0 = v_k \cdots v_i$, where $i \geq k+1$ and $N(v_i) \subseteq V(P_0) \cup \{x_{t-1}\}$. Then $d(v_k) + d(v_i) \geq m$ and ,by (a), (b) and (c), we have

$$N(v_i) \cup N(v_k) \cup \{v_i, v_k\} \subseteq \{x_{t'}, \cdot \cdot \cdot, x_{m'}\}$$

and

$$N(v_k) \cap N(v_i) \subseteq \{x_{t'}, x_t\}.$$

So

$$|\{x_{t'}, \cdots, x_{m'}\}| \geq |N(v_i) \cup N(v_k)| + 2 \geq |N(v_i)| + |N(v_k)| - 2 + 2 \geq d(v_i) + d(v_k) \geq m.$$

Hence the cycle $C = P[x_{t'}, x_{m'}]x_{t'}$ has length at least m, a contradiction to the assumption. The result of the theorem follows. \square

References:

- [1] BONDY J A and MURTY U S R. Graph Theory with Applications [M]. Macmillan Press, 1976.
- [2] DEAN N and FRAISSE P. A degree condition for the circumference of a graph [J]. J. Graph Theory, 1989, 13(3): 331-334.

图的周长的一个度条件

朱永津1,周杰2

(1. 中国科学院系统科学研究所, 北京 100080; 2. 东北师范大学数学系, 长春 130024)

摘 要: 本文用度和给出一个关于图的最长圈的存在性条件. 这一结果是 N.Dean 和 P.Fraisse 的相应结论的推广.