CoHopficity of Self-Injective Rings *

HAO Zhi-feng¹, FENG Liang-gui²

- (1. Dept. of Appl. Math., South China University of Technology, Guangzhou 510641, China;
- 2. Dept. of Sys. & Eng. Math., National Univ. of Defence Tech., Changsha 410073, China)

Abstract: It is shown that a self-injective ring R is coHofian ring if and only if R has stable range one. This answers the open problem 5 of Varadarajian in [9] for self-injective ring R, i.e., $M_n(R)$ is coHopfian for coHopfian ring R. As a consequence of we answer problem of Goodeal in the affirmative in [3], for self-injective regular rings.

Key words: coHopfian rings; self-injective rings; stable range one.

Classification: AMS(1991) 16D70,16P70/CLC O153.3

Document code: A Article ID: 1000-341X(2001)02-0203-04

1. Introduction

Let R be an associative ring with identity. The concept of coHopfian rings was introduced by Roiterg in algebraic topology^[6] and named by Varadarajan^[9]. A ring R is called coHopfian in Mod-R if for every injective homomorphism $f: R \to R$ is an isomorphism. One question on coHopfian rings is proposed by K. Varadarajan^[9].

Question 1 Characterize the coHopfian ring R for which the matrix ring over R is also a coHopfian in mod- $M_n(R)$.

In this paper, we will answer the Varadarajan's question in the case when R is a self-injective ring. In particular, we prove that "directly finite regular" properly is preserved under the formation of matrix, provided that the ring is a self-injective regular ring. It give a answer to an open problem raised by Goodeal^[3] that whether "directly finite regular" preserved under the formation of matrix rings.

Thoughout this paper, we use ann(x) to denote the right annihilator of x in R. For more information on coHopfian rings and list of examples, see [9].

We begin with a basic lemma.

Lemma 2 Let R be a self-injective ring. Then $ann(a) \subset ann(b)$ if and only if b = ax.

*Received date: 1998-04-06

Foundation item: Supported by the Natural Science Foundation of China (19901009)

Biography: HAO Zhi-feng (1968-), male, born in Suzhou city, Jiangsu province, Ph.D., Professor.

E-mail: mazfhao@scut.edu.cn

Proof (\Longrightarrow) :Trivial.

 (\Leftarrow) : Define a map $f: aR \to R$ by f(ar) = br, for $r \in R$. Since $ann(a) \subset ann(b)$, f is well-defined. Now we have the following commutative diagram:

$$\begin{array}{ccc}
R \\
f \uparrow & \nwarrow g \\
0 \rightarrow aR & \xrightarrow{i} & R,
\end{array}$$

where i is an inclusion morphism. Since R is injective module, there exists $g: R \to R$ such that $g \cdot i = f$. Denote x = g(1). Then $b = f(a \cdot 1) = g \cdot i(a \cdot 1) = ag(1) = ax$ as required. \Box The following characterization of a coHopfian ring was given by Varadarajan^[9].

Lemma 3 Let R be a ring. R is coHopfian if and only if a is an invertible element for ann(a) = 0.

Recall that R is said to have stable range one if for any $a, b \in R$ satisfying aR + bR = R, there exists $y \in R$ such that a + by is a unit.

The main result of this note is

Theorem 4 Let R be a self-injective ring R is coHopfian in mod-R ring if and only if R has stable range one.

Proof (\Longrightarrow): Assume that aR + bR = R. Then $\operatorname{ann}(a) \cap \operatorname{ann}(b) = 0$. Denote $f : \operatorname{ann}(b) \to R$ by f(x) = xa for $x \in \operatorname{ann}(b)$. Since $\operatorname{ann}(a) \cap \operatorname{ann}(b) = 0$, f is well-defined and a monomorphism. From the injectity of R, there exists $\theta : R \to R$ such that the following diagram commutates:

where i is an inclusion map and $\pi_b(r) = br$. We claim that ψ is a monomorphism. Suppose that $\psi(br_1) = \psi(br_2)$, i.e., $\theta(r_1) + \operatorname{Im} f = \theta(r_1) + \operatorname{Im} f$. Hence $\theta(r_1 - r_2) = f(x_0) \in \operatorname{Im} f$, $x_0 \in \operatorname{ann}(b)$. It follows that $r_1 - r_2 \in \operatorname{ann}(b)$ and hence $br_1 - br_2 = 0$. Since R is a coHopfian in mod-R, then θ is ismorphism. Thus there exists a unit $y = \theta(1) \in R$ such that $f(r) = \theta i(r)$, i.e., $r \cdot a = r \cdot y$, for any $r \in \operatorname{ann}(b)$. So that $r \cdot a \cdot y^{-1} = r$. Therefore we prove that $\operatorname{ann}(b) \subset \operatorname{ann}(ay^{-1} - 1)$. By Lemma 2, $ay^{-1} - 1 = bx$, i.e., $ay^{-1} - bx = 1$. Since y is a unit, we get a - bxy is a unit of R.

 (\Leftarrow) : Let $a \in R$ with $\operatorname{ann}(a) = 0$. By Lemma 3, it is sufficient to show that a is invertible. We first show that there exists $b \in R$ such that ab = 1. For this purpose, Let $f: Ra \to R$ be defined by f(ra) = r. Since $\operatorname{ann}(a) = 0$, f is well-defined. Now we have the following commutative diagram:

$$\begin{array}{ccc} Ra & \xrightarrow{i} & R \\ f \downarrow & \swarrow g & \\ R & & , \end{array}$$

where i is an inclusion map. By the assumption, R is an injective module, there exits $g: R \to R$ such that $g \cdot i = f$. Thus $g \cdot i(a) = f(a)$. This implies $a \cdot g(1) = 1$. Denote g(1) = b. Then ab = 1. Since R has stable range one, there exists $c \in R$ such that ca is unit. Thus a is invertible as required. This completes the proof of theorem. \Box

The following lemma guarantee that stable one preserves under the formation of matrix rings.

Lemma 5^[10]. Let R be a ring. R has stable range one if and only if $M_n(R)$ has stable range one.

Proposition 6 Let R be a self-injective ring. R is coHopfian in mod-R if and only if $M_n(R)$ is coHopfian in mod- $M_n(R)$.

Proof It is well-known that $M_n(R)$ is also a self-injective ring. By Theorem 4 and Lemma 5, we have R is coHopfian \Leftrightarrow R has stable range one $\Leftrightarrow M_n(R)$ has stable range one $\Leftrightarrow M_n(R)$ is coHopfian. This completes the proof. \square

Proposition 6 answers the question of Varadarajan for self-injective rings. In particular, since quasi-Frobeius rings are self-injective rings. We have

Corollary 7 Let R be a quasi-Frobenius rings. R is coHopfian in mod-R if and only if $M_n(R)$ is coHopfian in mod- $M_n(R)$.

As a consequence of Proposition 6 and Corollary 7, we have

Remark 8 Let R be one of the following rings:

- (1) R is a Frobenius algebra^[4];
- (2) R is finite-dimensional semisimple algebra (such as $R = M_n(F)$, where F is a field)^[4];
- (3) R = SG, where S is a quasi-Frobensius ring(such as a field) and G is a finite group([1]);
 - $(4) \quad R = \mathbf{Z}/\mathbf{n}\mathbf{Z}^{[7]};$
 - (5) R = F[x]/I, where F[x] is a polynomial ring over field F and I is a nonzero idea^[7];
 - (6) R is semilocal ring which R is a cogenerator of mod- $R^{[1]}$;
 - (7) $R = \operatorname{End}_R(M)$, where M is quasi-injective right R-module^[2];
 - (8) R is IF rings(i.e., every injective R-modules is flat)^[11].

Then R is coHopfian in mod-R if and only if $M_n(R)$ is coHopfian in mod- $M_n(R)$.

Recall that a module M is said to be directly finite if $M \oplus N \cong M$ implies N = 0. It is an open problem of Goodeal^[3] that whether "directly finite regular" is Morita-invariant. Shepherdson^[8] showed that "directly finite" is not Morita-invariant.

Note that direct finiteness involved in the concepts of "finite projections" in operator algebras and "finite idempotents" in Baer rings^[5]. As an application of Theorem 4, we show that the problem of Goodeal is in the affirmative for matrix ring over directly finite regular self-injective rings.

Lemma 9 Let R be a self-injective regular ring. R is coHopfian in mod-R if and only if R is directly finite.

Proof From Lemma 2 and [3] Lemma 5.1,we get the conclusion.

The following Prosition follows from Lemma 9 and Theorem 4.

Proposition 10 Let R be a self-injective regular ring. If R is directly finite then $M_n(R)$ is also directly finite for all n.

References:

- [1] FAITH C. Algebra II, Rings Theory [M]. Springer-Verlag, London, 1982.
- [2] GOODEAL K R. Rings Theory, Nonsingular rings and Modules, Marcel Dekkere [M]. Inc., New York, 1976.
- [3] GOODEAL K R. Von Nenumann Regular Rings [M]. Pitman, London, 1979.
- [4] KASCH F. Modules and Rings [M]. Academic Press, London, 1982.
- [5] KAPLASKY I. Ring of operators [M]. New York, Benjamin, 1968.
- [6] ROITBERG J. Residually finite Hopfian and Co-Hopfian spaces [J]. Contemp. Math., 1985, 37: 131-144.
- [7] ROTMAN J J. An Introduction to Homolgical Algebra [M]. Academic Press, New York, 1979.
- [8] SHEPHERDSON J C. Invrse and zero-divisors in matrix rings [J]. Proc. London Math., 1951,
 1: 71-85.
- [9] VARADAJAN K. Hopfian and coHopfian objects [J]. Publications Mathematitions, 1992, 26: 293-317.
- [10] VASERTEIN L N. Bass's first stable range condition [J]. J. of Pure and Appl. Algebra, 1984, 34: 319-330.
- [11] ZHU Xiao-sheng. IF rings and quasi-ZIF rings [J]. Acta Mathematica Sinica, 1996, 39: 226-230.

自内射环的余Hopf性

郝志峰1、冯良贵2

(1. 华南理工大学应用数学系, 广东 广州 510641; 2. 国防科技大学七系, 湖南 长沙 410073)

摘 要: 本文证明了自内射环 R 是余 Hopf 的当且仅当 R 满足 stable range one. 于是得到了 Varadarajan 在 [9] 中的公开问题对于自内射环是成立的,即 $M_n(R)$ 是余 Hopf 的当且仅当 R 是余 Hopf 的. 作为应用证明了 Goodeal 的一个公开问题对于自内射正则环有肯定的回答.