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Abstract: A discussion is given on the convergence of the on-line gradient methods for
two-layer feedforward neural networks in general cases. The theories are applied to some
usual activation functions and energy functions.
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1. Introduction

The on-line gradient method (OGM) originates from the steepest descent method. It
is similar to the Gauss-Seidel method for solving linear equations in that the proceeding
results are applied immediately in the computation of the present step in a learning pro-
cedure. Due to its rapidity, economy and high efficiency, it has been in the good graces
of engineering community and has found a wide application in the computation problems
of neural networks. However, in the nonlinear case, not very much is known about the
convergence of OGM for a given set of finite training examples. Convergence theorems of
OGM are given in [1] for a special error function, the square error function. This paper
generalizes the results of [1] to more general cases and obtains corresponding convergence
results.

This paper is arranged as follows. In Section 2 we introduce some preliminary knowl-
edge, pose some lemmas, and prove three theorems based on the lemmas. These results
are essential to prove the convergence theorems. A weak convergence theorem, a strong
convergence theorem and a theorem on the rate of convergence are given in Section 3.
In Section 4 the'rela.tionshjp between the assumptions in this paper and those in [1] is
discussed and some usual activation functions and energy functions are listed.
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2. Preliminary Theorems

What we will discuss are two-layer feedforward neural networks whose structure isn-1
(see Fig.1). It can be used to solve simple classification problems. We assume that 4
a given set of training examples is {¢, 07 };=1
C R™ x RY(O7 is the desired output), weight
vector is w = (wy,wsa, " ,wn)T € R™ and the
activation function is g : R? — Iy ( Ip is a finite
interval). The expression of energy function
E:R"—[0,00)is

Output g (w- §j)

J
B(w) =3 F; [gw- €]
J

=SB (v-8), 1)
j=1 Fig.l Two-layer feedforward neural networks
whose structure is n-1

where we have introduced the function E; to simplify the expression and the deduction.
For given functions E and g, our task is to obtain weight vector w* through network

learning such that

E(w') = inf E(). (2.2)

The gradient of the function E(w) is
J 3 .
E'=) Ejw-£)¢. (2.3)
j=1

In the steepest descent method or the gradient method , the present weight value w is

revised by
J

Aw=—nE' =Y (-n)Ej(w- )¢, | (2.4)

i=1

where 7 > 0 is the learning step size. In the on-line gradient method, we choose
Ajw = —nEBj(w - £)¢. (2.5)

For the convenience of discussion, we train the network by selecting the training examples
in a fixed order. Then the learning algorithm of OGM can be express to be

W™ = Il LA™ =12, 0, m=0,1,0 - (2.6)

From (2.3) and (2.5), the following relationship can be obtained
J
> Ajw = —nE'(w). (2.7
i=1 ‘ '
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Defining :
Pim = D™ Il D™, j=1,2,---,J; m=0,1,---
Specifically, we have that , ‘ '
P1m =0, m=0,1,---
Several assumptions used in the paper are given below:
(B1) The input example vectors {f,} =, are J linearly independent vectors in R™.

(B2) The second derivatives of functions E; : R! — [0,00) exist, and |E;I and
lEJ”I (1 £ j < J) are uniformly bounded.
(B3) The Hessian matrix H(w) = E" = (;22- 3% aw Jnxn is a positive definite matrix, i.e.,

there exist constants C; and C; (C; > Cy > 0) such that for arbitrary vectors y and w in
R™, there holds

Cillyl® < yTH(w)y < Callyll?,
where || - || is the Euclidean norm in R™.
Remark 1 Only conditions (B1)-(B2) are needed to deduce the convergence of the
iterative sequence {w'} of weights (see Theorem 3.1 later). For most nonlinear activation
functions, this is the best result we can expect. Condition (B3) is more stronger. Theorem

3.2 indicates that we can obtain a strong convergence of OGM if (B3) is satisfied, similarly
as the standard gradient method for the minimum problems of quadratic functionals.

Lemma 2.1 Suppose that (B1) is satisfied. Then there exists a positive constant a €
(0,3] such that for arbitrary § = (81,83, - -,67)T € RY, there holds that

J J
1D &1 > a ) 116;€°]1. (2.8)
i=1 i=1
Remark 2 The proofs of Lemma 2.1 and some theorems below are omitted because they
can be proved easily or be found in [1].
Lemma 2.2 Forj=1,2,-.--,J; m=0,1,---, there holds
J
me+.’l —_ me + Z(Akwm.l + Tk,m)- (29)

k=1

Lemma 2.3 Suppose that (B2) is satisfied. Then there exists a constant C > 0 such that
for m = 0,1, -, there holds

J J
Yo lrimll < C0 Y- 1A0™ ). (2.10)

J=1 7=1
Lemma 2.4 Let (B2) be satisfied and let ] = w(m+1)J — ™ ';m = 0,1,---, then there

exists a constant C > 0 such that
J
lwgll < €Y IIAw™ . (2.11)
J=1
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Lemma 2.5 By the Cauchy-Schwarz inequality, we have that
(Z [450™ ) < JZ |Aw™|?, m=0,1,---. (2.12)
i=1 .

Theorem 2.1 Suppose that (B2) is satisfied, then there exists a posmve constant ‘y
independent of 7, j and m such that for j = 1,2,---,J; m = 0,1,---, there holds

E(tm+) < E(w"‘J) —ll Z D™ P+ Z [ ad i (2.13)
n Jj=1 j=1
Proof Set ‘
Mo = max, 1€7]], M = max, sup IE®(2)], k= 1,2. (2.14)

By the Taylor expansion we derive
E;(wm D . gy = Ej(w™ - &) + Ej(w™ - @)wT & + 8jm, (215)
where §;,m = LE/(t)(w] - €)%, t. = (1 - 6)(w™ - €7) + f(w(™+1J . £9),0 < 6 < 1.Noting
(2.5) and summing both sides of (2 15) from 1 to J, we have
J . J . 1 J
3 Bt ) = Y Bi(w™ - €) - —(Z Aw™) WF + Y Bim.
i=1 3=1 M =1 i=1

Also, by (2.1) and (2.9), we can obtain

E(w™) = B(w™) - —|| ZA W™ - —(ZA w™)- (E rim) + 25,

j=1

Using (2.10) and (2.12), we have that

-I(ZA w™) - (Zrm)l< ZIIA w"‘JII(CmZIIA w™ 1)

Jj=1

<CJ Z A ;u™7 |2

i=1

From (2.14), (2.11) and (2.12), we get

J
CIMIMLI? Y (| A™ .

J=1

Nl'—‘

Z 165,m| < Z |EF @) T IP1E0® <

Finally (2.13) is proved by choosing 7 = (C1 + 3C3 M M,J)J. O
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Theorem 2.2 Suppose that (B1) and (B2) are satisfied, that positive constants a and v
are defined in Lemma 2.1 and Theorem 2.1 respectively, and that the step size n satisfies

0<n< % (2.16)

then for m = 0,1,---, there holds

J
Ew™) < E(w™) - By [|80™ |1, (2.17)
i=1

where the positive constant B is defined by

a
Ui
Moreover, there also holds

oo J
>N 1ajw™ ) < o, (2.19)

m=0j3=1

J J
Jim 3 [1A0™ ] =0, (2:20)
J=1

lim W™+ — ™| =0, j=1,2,---, /. (2.21)

17— OO

Proof Let &; = —nEj(w™’ - ¢7), then from (2.5) we have

Ajme = 6_7~Ej.
Combining with (2.8) gives
J J
I3 201 2 a2 0™ (2.22)
i= i=

Again, making use of (2.18), we derive
1 J J J ;
—;H DA™+ 3o NA™ | < =B Y D™
Jj=1 j=1 j=1

(2.17) can be obtained by substituting the above expression into (2.13).
From (2.17), there holds

M J
2
E(wM+D7y < E@W°) -8 Z Z ”Ajw'"J” .
m=0j=1
Since E(wM+1)7) > 0 for any nonnegative integer M, we have

M J
22 l1Aw™? <

m=0j=1

E(w°),

R
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so (2.19) is also satisfied.
(2.20) can be easily proved from (2.19), (2.12) and the necessary condition for the

convergence of number series.
It follows from (2.9) and (2.10) that

J
o+ — o™ < €Yo N1Aw™ N, §=1,2,000,,
i=1

and (2.21) is thus satisfied. This completes the proof. D

Theorem 2.3 Suppose that (B1) and (B2) are satisfied. Then there exist positive
constants p and v such that for m = 0,1, -, there holds

J
S lirimll < pn?| B'@™)| and [l < vall B (w™)].
i=1

Proof It follows from (2.22) and (2.7) that
J J
S law™ |2 < el Y A™ P = Cun?|| B'W™)|12. (2.23)

j=1 i=1

By (2.10), (2.12) and (2.23), we conclude that

J J J ‘
3 lirjemll < Coml(3 1850™ 1)2)E < Can(J 3 1AW [1%)5
; =

J=1 i=1
1 1 m
< CuIip(CLnP | B (w™)|1?)7 = pnP LB (™)),

1
where p = CY C,J . Finally, from (2.11), (2.12) and (2.23) we get

: J J
gl < Co 3 1856™ ) < CaT (Y Az |3

Jj=1 J=1

< CaJ 3 (CinP||E'(@™))|?)7 = vnl| B/ (™),
1
where v = CZ C3J 3. This completes the proof. 0O

3. Convergence Theorems

Based on the above preliminaries, it is not difficult to obtain the following convergence
theorems whose proofs are the same as the corresponding results in [1].

Theorem 3.1 (weak convergence theorem) Suppose that (B1), (B2), (2.16) and (2.18)
are satisfied and the sequence {w'} is generated from the learning algorithm (2.6) of OGM,
then there exists a constant E* > 0 such that
lim E(w') = E* and lim ||E'(w')|| = 0.

1— 00

1— 00
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Moreover, if & is a limit point of the sequence {w'}, then E'(@) = 0.

Theorem 3.2 (strong convergence theorem) Suppose that (B1)-(B3), (2.16) and (2.18)
are satisfied and the sequence {w'} is generated from the learning algorithm (2.6) of OGM,
then there exists a unique minimum point w* € R™ such that

E(w*) = wien}i?"' E(w) and ilirg) lw* = w*| = 0.

In order to present Theorem 3.3 for the estimation of the convergence rate, we require

the step size
2 B,

31
"2u+v2B,’ 2BV (3.1)
where a and 7 are the constants that appear in Lemma 2.1 and Theorem 2.1 respectively,
and constants u and v are chosen according to Theorem 2.3. Let

7)<min{E
7

1 .
A=1-(p+ §1/2192)1;. (3.2)
Then we have
0<A<l. (3.3)
Combining (3.3) with (3.1) gives
B, B,
"< 387 < 2B’
Write B
2Bj
=1- 4
¢=1-="n, (3-4)
then there holds that
0<g<1.

Theorem 3.3 Suppose (B1)-(B3) and (3.1)-(3.4) are satisfied, w™ is the unique mini-
mum point of function E(w) in R™ and the sequence {w'} is generated from the learning
algorithm (2.6) of OGM, then for j = 0,1,---,J —1; m = 0,1, - - -, there holds that

|E(w™*) ~ E(w")| < ¢™|E(w?) - B(w"),
j * By 1 L y *
o™ - W™l < ()P F o - w7l

4. Applications of Convergence Theorems

This paper is based on the work of [1] as mentioned above. So in this section we
first have a look at the relationship between the assumptions in the two papers. [1]
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has given four assumptions (A1)-(A4), in which conditions (Al) and (A4) are the same
with (B1) and (B3) in this paper respectively. Condition (A2) requires that there holds
w' € 0 (i = 0,1, ) for an arbitrary initial weight vector Wl € Q, where  is a region in R"
and the meaning of the sequence {w'} is the same as that in Theorem 3.1. Condition (A3)
requires that the functions lg®)(w - €9)| (k = 0,1,2; 1 < j < J) are uniformly bounded for
arbitrary w € . When a network is used for classification problems, ) becomes R"(cf. the
discussion after condition (A3) in [1]). Then conditions (A2) and (A3) virtually demand
that the functions |¢*)(z)| (k = 0,1, 2) be uniformly bounded for arbitrary z € R'. Hence,
to analyze the relationship between these two conditions and (B2) in the paper becomes
the key problem. To this end we have (the proof is omitted)

Proposition 4.1 If conditions (A2) and (A3) are satisfied with @ = R™ and the functions
E;(z) = {07 - g(=)]*(1 < j < J), then condition (B2) is satisfied.

Compared with (A2) and (A3), condition (B2) is suitable not only for more error
functions, but also for some unbounded activation functions.

Proposition 4.2 Suppose that g(z) = (2? + ﬁz)%(ﬂ > 0), E;(z) = In{1 + [07 — g(=)]*}
(1 < j < J), then the function Ej(z) (1 < j < J) satisfies (B2).

The proof to the above proposition is straightforward and thus is omitted.

For the convenience of applications, we list below some usual activation functions and
energy functions (the activation function g (z) in the expression of the energy function
E(w) can be chosen from the following three types). It can be proved that the suitably
chosen functions E; (z) (1 < j < J) will satisfy condition (B2) (where usually the activa-
tion function (4.7) is only used for (4.11) and (4.12), and the activation function g(z) in
energy functions (4.10) and (4.15) is usually chosen from (4.2), while the others can be
combined arbitrarily.)

Activation functions

(i) Sigmoid functions

g(z)= l—jr%;a \ (4.1)
g(2) = tanh (2), (42)
g(z) = % arctan (z), (4.3)

2 [T _2
g(z)=erf(z)= -ﬁ/o e " du. (4.4)

(ii) Radial basis functions

g(z) = e—:_z, o>0, (4.5)
g(z) = (22 +p%)72, B>0, (4.6)
9(2) = (2" +8%7, B>0. (4.7)
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(iii) Segment function

(0, z< -2,
(2+2)°, -2<z<~1,
(z)_<(2+:c)3——4(1+z)3, -1<z<0,
g\E) = (2-2)°-4(1-2), 0<z<1,
(2 -z)°, l<z<2,
\0, z > 2.

Energy function

(i) Square error function
A .
=5 2.[07 - g(w- &)}
J=1

(ii) Measure of the cross entropy

L1 : 1407 1 0
B= TG0+ e 3O G

i=1

(iii) Cauchy error function
J . .
E =) In{l+[0 - g(w-&)I}.
=1

(iv) Logistical error function

B8 < : .

== z:ln{cosh[cnz(oJ ~gw-&)N)}, a>0,8>0.
a o

(v) Generalized error function

E= Z{O’[O“—g(w )] + —[g( £)- (077}, 0<A< L.

J=1

(vi) Linear combination error functions

B =152010 —gfo- 60 + dolt - L0y, 4050
j=1
E=j_§J:1{§[o oo O + [(1+0)1n1j—91f3,%,-—)
(-0 222y
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(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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