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Abstract: In the paper the asympotic behavior of the solution of the following second
order differential equation

Y +q(t)f(y) =0

is investigated. Some results for asymptotic behavior of the nonoscillation solution are
obtained.
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1. Introduction

Motivated by application, oscillation theory of second order differential equation have
been extensively studied during the past decades. Papers [1-4] were concerned with the
following differential equation

"+ Q(t)lyla(t)sign(y) = 0, (1)

where a(t) € Cltg,+00),t0 > 0 and a(t) < 0 for arbitrarity large values of . Some
ocillation criteria for Eq(1) are obtained.
In this paper, we are interested in the following differential equation in the form of

¥ +4q(t)f(y) =0, (2)

where ¢(t) € Cl[to,+0),t0 > 0, f(y) is a continuous real-valued function and satisfies
J(y)y > 0 for all y # 0, and mainly study the asymptotic behavior of the nonoscillation of
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Eq(2). Throughout the paper we shall restrict our attention only to the solutions which
exist in [Tp, +00),(To > to) and satisfy Sup{|y(t)| : ¢t > T} > O(T > To).

As a customary, a solution is said oscillatory if it has arbitrarily large zeros, and
nonoscillatory if it is eventually positive or negative.

Theorem 1 If g(t) > 0,¢'(t) > O(t > to), and limy,_,, ¥ f(u)du = +oo, then each
nonoscillation solution of Eq(2) is bounded and y(t) has a horizontal asymtote, i.e., there
exists some constant L such that im,_, o y(t) = L

Proof For the nonoscillation solution y(t) of Eq(2), there exists some t; > tp such that
y(t) # 0 when t > ¢,. Therefore

v (@t), _ _d)fly) _v(0) f(y)
[y(t)] - y [ (t)] (t) (3)

It is easy to say that % is a monotonously decreasing function. Suppose y(t) > 0,t > 1,

if there is ¢ > t;, such that ’ﬁ%l < 0(t > t2), then for any t > t5,3'(t) < 0. From
v’ = —q(t)f(y(t)) < 0, we get that y(¢) is a monotonously decreasing and convex function.
Therefore, there must exist ¢3 > t; such that y(t3) < 0. Which is contridiction with our
hypothesis. That is to say that 3;—’((-3 > 0 and y'(t) > 0 for t > t;. If y(t) < 0,¢ > ¢, the

proof is similar to the above, we also have %t%l > 0 and y'(t) < 0 for t > ¢;.

From the above it implies that the nonoscillation solution y(t) of Eq(2) is either
monotonously increasing or decreasing when t is enough large.

Multiplying the both sides of Eq(2) by y’(t), then integrating from t; to ¢, we have

[yt + [ st =o

That is

SWOP+ [ () (i = T o)l (4
Denote I(y) = [} f(u)du,yo = y(to), from (4) we get
WP +dOI0) = JW ) + g + [ (OGN ()
Thus, we have
(0160 < K + | L a1tu(mpar

}\there K = 3[y'(to)]? + q(to)I(y(to)). Since ¢'(t) > 0, applying Gronwall’s inequality, we
ave

K
1W(t) < o5 < +oo. (6)

Inequality (6) implies that y(t) must be bounded. And if y(¢) > 0,y(t)y’(¢t) > 0, for
enough large t, then there must exist L > 0 such that lim, ,,, y(t) = L. Similarly,
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if y(t) < 0,y(t)y’(t) > 0, for enough large t, then there must exist L < 0 such that
limt_*+°° y(t) = L a

Theorem 2 If ¢(t) > 0,¢'(t) > 0 for t > to and limy,_, o [ f(u)d(u) = +oo, then
y'(t), the derivative of each nonscilation solution y(t) of Eq(2) is bounded and y'(t) has a
horizontal asymptote, i.e., there exists some constant L such that lim, 4+, y'(t) = L.

Proof If y(t) is any one nonoscillation solution of Eq(2), from the proof of Theorem 1
there is t; > tg, such that y(¢)y'(¢t) > 0 when t > t1. If y(¢t) > 0, with (2) we get

¥"(t) = —q(t)f(y(t)) <0, t> 1

This implies that y’(t) is monotonously decreasing. If y(t) < 0, with (2) we get

¥'(t) = —a(t)f(y(2)) >0, t >t

This implies that y’(¢) is monotonously increasing. And also

[ ¢e)rarr = s 1w) - atea) o) - [ a0 @ (0
According to (5), we have

%[y'(t)]2 < K — q(to)I(y(to)) (8)

This is to say that |y(t)| is bounded. With the monotonousness of y'(t) we get if y(¢t) > 0,
then there exists a constant L > 0 such that lim; 4 ¥'(t) = L. And if y(t) < 0, then
there exists a constant L < 0 such that lim; 4., y'(t) = L. O
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