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On the Linear Scheme for the Reissner-Mindlin
Plate Problem *
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Abstract: In this paper we give the optimal sclection of the bubble function in the
linear scheme proposed by recent paper [1] for the Reissner-Mindlin plate problem.
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In this paper we discuss the optimal selection of the bubble function in the linear
scheme proposed by X.L. Cheng, W. Han and H.C. Huang in [1] for the Reissner-Mindlin
plate problem.

Let 0 denote the region in R? occupied by the midsection of the plate, and denote
by w and ¢ the transverse displacement of {1 and the rotation of the fibers normal to {2,
respectively. The Reissner-Mindlin plate model determines (w, $) as the unique solution
to the following variational problem: Find (w, §) € H}(Q) x [Hj ()] such that

a(@,¥) + A"2G - YV, - V) = (g,1), V(k,¥) € HY Q) x [HIQ)P. (1)

Here g is the scaled transverse loading function, t is the plate thickness, A = Ek/2(1 + v)
with E the Young’s modulus, v the Poisson ratio, k the shear correction factor, and the
parentheses denote the usual L? inner product. The bilinear form a(-, ) is defined as
__E— [(Qﬁ+y%)%+(u%+% @_2+
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where ¢1, 92 and %,, ¥, are the components of ¢ and 117 It can be proved, by using
Korn’s inequality, that a(-,-) is an inner product on [H}())? equivalent to the usual one.
For simplicity, we will assume

(@, %) = (VF, V). (3)

Let (2 be a convex polygon and G, be a regular triangular partition of 0 where as
usual h stands for the mesh size. Define finite element spaces by

Wi ={v € Hy(Q) :v|r € P(T), VT € S}, (4)
By ={’U € Htll(ﬂ) : v\T € Span{bT}, VT € c‘\yh}’ (5)
where br is a bubble function on element T. A natural way is to choose b7 = AjA2As,

where \;(7 = 1,2,3) are the barycentric coordinates in triangle . We can also choose a
hat-function for br. Denote

Ho(rot; Q) = {ji € [L*()]? : rotjd € L*(Q),fi- 7 = 0 on IN}.

We define
Hh = [Wh @ Bh]Z» (6)
T = {ie[L*(Q): flr e [P(T)?, VT € S}, (7
Qn = {ii € Ho(rot; Q) : 1 € [Po(T) & (y, ~2)Po(T), VT € Sn}. (8)

Define an operator Ry, : Ho(rot; ) — @y, by the conditions
/(Rhs‘)-f:/;-f, Ve 8T, VT € Sy, (9)

where 7 is tangential unit vector of the edge e of an element T'. It is a reduction operator
to the lowest order rotated Raviart-Thomas space Q. Also define P, : [L?(Q)]? — T} by

.t
meas(T)

We now define an operator 7, : H, — T'),. For g € Hj,, with g = gV + 38, gL € [Wh)?
and @B ¢ [By)?, let

(Phir = /T sdzdy. (10)

@ = PuRuG” + Prgt. (11)

The linear scheme proposed in [1] was given in the following problem:
Find (wp, @r) € Wi x Hy, such that

a(‘)ah)d:h) + /\t_2(7rh‘;5h - thawh'(j;h - V’Uh) = (91 vh)a V(vhad;h) € Wh X Hh- (12)

The existence and uniqueness of the solution follow from the coerciveness of a(-,-). Elim-
inating the bubble function b7 at element level, we can obtain the following problem:
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Find (wh, @) € W), x [W3]? such that

(@) + Y M2+ J(b1)) M (mBh — Vwn, Tt — Vou)7

TEJh
= (y,U},),V(‘U},,, ‘J;h) € Wh X [Wh]27 (13)
where
J(br) = (7/ br dz) // Vbr - Vbp dz. (14)
meas(T)

Theorem 1 Assume g € L*(Q). Let (w, ) and (wy, @) be the solutions of (1) and (12).
Then

16 — @nlln + [lw - willy < Crhllgllo, (15)
where
Cy < Cy + sup J(b)7}, (16)
TES

and C, Is a constant independent of h and t.

Proof Similar to the proof of Theorem 4.5 (pp.230-231) in [1].

Then there are two criteria to select a good bubble function. From (16}, it is indicated
that the bigger J(br), the smaller constants in the error estimates. From (13), it follows
indicating that the bigger J(br), the less possibility of the occurence of the locking by the
small thickness t. These two criteria imply to determine the optimal bubble function by

J(b3) = sup J(br). (17)
breHNT)

Then we can obtain the result using the method in [2]:

Theorem 2 Let l.)T be the solution of

—Abp =1, in T
- b} I 18
{ br =0, on OT. (18)

Then we have .
J(b%) = sup  J(bp) = —/ br de. (19)

Remark The equivalence of (12) and (13) is based on the assumption of bilinear form
(3). Otherwise we obtain the following equivalent formulation:
Find (wy,, gr) € Wi x [W4]? such that

ao(Gn ) + Y. Mt? I + Br) " (mudn — Vwn, i — Von)T

TeS,
= (g, v)¥(vn, Y1) € Wi, x [W4]?, (20)
where
i 10
Br = means(T)Az;", I, = 01 | (21)
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a((br,0),(0,87)) a((0,br),(0,b7))

The matrix Ar is not diagonal, neither is the matrix Br. But the error estimates (15) and
(16) in Theorem 1 hold without the assumption (3). So the optimal selection of bubble
function is the same as Theorem 2.

fp o ( a((b7,0), (br,0)) a((0,b7),(br,0)) ) _ (22)
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