On the Linear Scheme for the Reissner-Mindlin Plate Problem *

CHENG Xiao-liang

(Dept. of Math., Zhejiang University, Hangzhou 310028, China)

Abstract: In this paper we give the optimal selection of the bubble function in the linear scheme proposed by recent paper [1] for the Reissner-Mindlin plate problem.

Key words: optimal selection; bubble function; Reissner-Mindlin plate.

Classification: AMS(1991) 65N30/CLC ()241.82

Document code: A **Article ID:** 1000-341X(2001)04-0491-04

In this paper we discuss the optimal selection of the bubble function in the linear scheme proposed by X.L. Cheng, W. Han and H.C. Huang in [1] for the Reissner-Mindlin plate problem.

Let Ω denote the region in R^2 occupied by the midsection of the plate, and denote by w and $\vec{\varphi}$ the transverse displacement of Ω and the rotation of the fibers normal to Ω , respectively. The Reissner-Mindlin plate model determines $(w, \vec{\varphi})$ as the unique solution to the following variational problem: Find $(w, \vec{\varphi}) \in H_0^1(\Omega) \times [H_0^1(\Omega)]^2$ such that

$$a(\vec{\varphi}, \vec{\psi}) + \lambda t^{-2}(\vec{\varphi} - \nabla w, \vec{\psi} - \nabla \mu) = (g, \mu), \quad \forall (\mu, \vec{\psi}) \in H_0^1(\Omega) \times [H_0^1(\Omega)]^2. \tag{1}$$

Here g is the scaled transverse loading function, t is the plate thickness, $\lambda = Ek/2(1+\nu)$ with E the Young's modulus, ν the Poisson ratio, k the shear correction factor, and the parentheses denote the usual L^2 inner product. The bilinear form $a(\cdot, \cdot)$ is defined as

$$a(\vec{\varphi}, \vec{\psi}) = \frac{E}{12(1 - \nu^2)} \int_{\Omega} \left[\left(\frac{\partial \varphi_1}{\partial x} + \nu \frac{\partial \varphi_2}{\partial y} \right) \frac{\partial \psi_1}{\partial x} + \left(\nu \frac{\partial \varphi_1}{\partial x} + \frac{\partial \varphi_2}{\partial y} \right) \frac{\partial \psi_2}{\partial y} + \frac{1 - \nu}{2} \left(\frac{\partial \varphi_1}{\partial y} + \frac{\partial \varphi_2}{\partial x} \right) \left(\frac{\partial \psi_1}{\partial y} + \frac{\partial \psi_2}{\partial x} \right) \right] dx dy,$$
 (2)

Foundation item: The project was supported by Zhejiang Provincial Natural Science Foundation of China (198035)

Biography: CHENG Xiao-liang (1965-), male, professor.

^{*}Received date: 1998-12-04

where φ_1 , φ_2 and ψ_1 , ψ_2 are the components of $\vec{\varphi}$ and $\vec{\psi}$. It can be proved, by using Korn's inequality, that $a(\cdot,\cdot)$ is an inner product on $[H_0^1(\Omega)]^2$ equivalent to the usual one. For simplicity, we will assume

$$a(\vec{\varphi}, \vec{\psi}) = (\nabla \vec{\varphi}, \nabla \vec{\psi}). \tag{3}$$

Let Ω be a convex polygon and \mathfrak{T}_h be a regular triangular partition of Ω where as usual h stands for the mesh size. Define finite element spaces by

$$W_h = \{ v \in H_0^1(\Omega) : v | _T \in P_1(T), \ \forall \ T \in \Im_h \}, \tag{4}$$

$$B_h = \{ v \in H_0^1(\Omega) : v | T \in \operatorname{span}\{b_T\}, \ \forall \ T \in \mathfrak{T}_h \},$$
 (5)

where b_T is a bubble function on element T. A natural way is to choose $b_T = \lambda_1 \lambda_2 \lambda_3$, where $\lambda_i (i = 1, 2, 3)$ are the barycentric coordinates in triangle T. We can also choose a hat-function for b_T . Denote

$$H_0(\operatorname{rot};\Omega) = \{\vec{\mu} \in [L^2(\Omega)]^2 : \operatorname{rot}\vec{\mu} \in L^2(\Omega), \vec{\mu} \cdot \vec{\tau} = 0 \text{ on } \partial\Omega\}.$$

We define

$$H_h = [W_h \oplus B_h]^2, \tag{6}$$

$$\Gamma_h = \{ \vec{\mu} \in [L^2(\Omega)]^2 : \vec{\mu}|_T \in [P_0(T)]^2, \ \forall T \in \Im_h \}, \tag{7}$$

$$Q_h = \{ \vec{\mu} \in H_0(\text{rot}; \Omega) : \vec{\mu}|_T \in [P_0(T)]^2 \oplus (y, -x)P_0(T), \ \forall T \in \Im_h \}.$$
 (8)

Define an operator $\mathcal{R}_h: H_0(\operatorname{rot};\Omega) \to Q_h$ by the conditions

$$\int_{e} (\mathcal{R}_{h} \vec{s}) \cdot \vec{\tau} = \int_{e} \vec{s} \cdot \vec{\tau}, \quad \forall e \in \partial T, \ \forall T \in \Im_{h}, \tag{9}$$

where $\vec{\tau}$ is tangential unit vector of the edge e of an element T. It is a reduction operator to the lowest order rotated Raviart-Thomas space Q_h . Also define $\mathcal{P}_h : [L^2(\Omega)]^2 \to \Gamma_h$ by

$$(\mathcal{P}_h \vec{s})|_T = \frac{1}{\text{meas}(T)} \int_T \vec{s} dx dy. \tag{10}$$

We now define an operator $\pi_h: H_h \to \Gamma_h$. For $\vec{\varphi} \in H_h$, with $\vec{\varphi} = \vec{\varphi}^L + \vec{\varphi}^B$, $\vec{\varphi}^L \in [W_h]^2$ and $\vec{\varphi}^B \in [B_h]^2$, let

$$\pi_h \vec{\varphi} = \mathcal{P}_h \mathcal{R}_h \vec{\varphi}^L + \mathcal{P}_h \vec{\varphi}^B. \tag{11}$$

The linear scheme proposed in [1] was given in the following problem:

Find $(w_h, \vec{\varphi}_h) \in W_h \times H_h$ such that

$$a(\vec{\varphi}_h, \vec{\psi}_h) + \lambda t^{-2}(\pi_h \vec{\varphi}_h - \nabla w_h, \pi_h \vec{\psi}_h - \nabla v_h) = (g, v_h), \ \forall (v_h, \vec{\psi}_h) \in W_h \times H_h.$$
 (12)

The existence and uniqueness of the solution follow from the coerciveness of $a(\cdot, \cdot)$. Eliminating the bubble function b_T at element level, we can obtain the following problem:

Find $(w_h, \vec{\varphi}_h) \in W_h \times [W_h]^2$ such that

$$a(\vec{\varphi}_h, \vec{\psi}_h) + \sum_{T \in \Im_h} \lambda (t^2 + J(b_T))^{-1} (\pi_h \vec{\varphi}_h - \nabla w_h, \pi_h \vec{\psi}_h - \nabla v_h)_T$$

$$= (g, v_h), \forall (v_h, \vec{\psi}_h) \in W_h \times [W_h]^2, \tag{13}$$

where

$$J(b_T) = \left(\frac{1}{\text{meas}(T)} \int_T b_T \, \mathrm{d}x\right)^2 / \int_T \nabla b_T \cdot \nabla b_T \, \mathrm{d}x. \tag{14}$$

Theorem 1 Assume $g \in L^2(\Omega)$. Let $(w, \vec{\varphi})$ and $(w_h, \vec{\varphi}_h)$ be the solutions of (1) and (12). Then

$$\|\vec{\varphi} - \vec{\varphi}_h\|_1 + \|w - w_h\|_1 \le C_1 h \|g\|_0, \tag{15}$$

where

$$C_1 \le C_2 + \sup_{T \in \Im_h} J(b_T)^{-1},$$
 (16)

and C_2 is a constant independent of h and t.

Proof Similar to the proof of Theorem 4.5 (pp.230-231) in [1].

Then there are two criteria to select a good bubble function. From (16), it is indicated that the bigger $J(b_T)$, the smaller constants in the error estimates. From (13), it follows indicating that the bigger $J(b_T)$, the less possibility of the occurence of the locking by the small thickness t. These two criteria imply to determine the optimal bubble function by

$$J(b_T^o) = \sup_{b_T \in H_0^1(T)} J(b_T). \tag{17}$$

Then we can obtain the result using the method in [2]:

Theorem 2 Let \tilde{b}_T be the solution of

$$\begin{cases}
-\Delta \tilde{b}_T = 1, & in \quad T, \\
\tilde{b}_T = 0, & on \quad \partial T.
\end{cases}$$
(18)

Then we have

$$J(b_T^o) = \sup_{b_T \in H_0^1(T)} J(b_T) = \frac{1}{\text{meas}(T)} \int_T \bar{b}_T \, dx.$$
 (19)

Remark The equivalence of (12) and (13) is based on the assumption of bilinear form (3). Otherwise we obtain the following equivalent formulation:

Find $(w_h, \vec{\varphi}_h) \in W_h \times [W_h]^2$ such that

$$a(\vec{\varphi}_h, \vec{\psi}_h) + \sum_{T \in \Im_h} \lambda (t^2 I_2 + B_T)^{-1} (\pi_h \vec{\varphi}_h - \nabla w_h, \pi_h \vec{\psi}_h - \nabla v_h)_T$$

$$= (g, v_h) \forall (v_h, \vec{\psi}_h) \in W_h \times [W_h]^2, \tag{20}$$

where

$$B_T = \text{means}(T)A_T^{-1}, \qquad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$
 (21)

$$A_T = \begin{pmatrix} a((b_T, 0), (b_T, 0)) & a((0, b_T), (b_T, 0)) \\ a((b_T, 0), (0, b_T)) & a((0, b_T), (0, b_T)) \end{pmatrix}. \tag{22}$$

The matrix A_T is not diagonal, neither is the matrix B_T . But the error estimates (15) and (16) in Theorem 1 hold without the assumption (3). So the optimal selection of bubble function is the same as Theorem 2.

References:

- [1] CHENG X L, HAN W, HUANG H C. Finite element methods for the Timoshenko beam, circular arch and Reissner-Mindlin plate problems [J]. J. Comput. Appl. Math., 1997, 79: 215-234.
- [2] PIERRE R. Optimal selection of the bubble function in the stabilization of the P1-P1 element for the Stokes problem [J]. SIAM J. Numer. Anal., 1995, 32: 1210 1224.

关于 Reissner-Mindlin 板问题的线性格式

程晓良

(浙江大学 (西溪校区) 数学系, 浙江 杭州 310028)

摘 要:本文给出 Reissner-Mindlin 板问题的线性格式 [1] 中的汽泡函数的最优选取。