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Asymptotic Expansion of Some Sheffer Polynomials *
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Abstract: Asymptotic expansion of two Sheffer polynomnials, namely, Charlier and
Laguerre, was obtained by L.C. Hsu® using a combinatorial method. In this paper,
L.C. Hsu’s method in [6] has been put into a formal theorem that the author successfully
applied to four other Sheffer polynomials: Poisson-Charlier, weighted Touchard, Toscano,
and Angelescu polynomials. Within some specified domains remainder estimates have
been obtained. Moreover, some spplicability and lititation have been mentioned.
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1. Introduction

Sheffer polynomials are generated by functions of the form (cf. Boas and Buck!!]

A(t)e®® = N pa(2)t™,

n=0

where A(t) and g(t) are functions analytic on some domain containing zero, with A(0) =
1,9(0) = 0 and ¢’(0) # 0.

The importance of these polynomials lies in their being the coeflicients of power series
expansion of analytic functions. Roman and Rotal!! treated these type of polynomials
using the method of umbral calculus. L.C. Hsu and Peter Shiuel” applied the cycle
indicator method to some of these polynomials and come up with a list of such polynomials
which are C,,-representable.

In this paper we obtain asymptotic expansion of the following Sheffer polynomials:
Poisson-Charlier, weighted Touchard, Toscano, and Angelescu polynomials, as a parameter
A goes to positive infinity under some restrictions with respect to the degree of the given
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polynomial. We will use the cycle indicator method that was first used by L.C. Hsulfl,
although he did not call it cycle-indicator method. Here L.C. Hsu's method has been put
into a formal theorem and is successfully applied to the four polynomials mentioned.

2. The cycle indicator method

The cycle indicator C,, may be written (cf. Riordan/!)

n! t1 k tz k &
Cnt,t,"’,t = E— . L A L Y [ . 21
(1 2 Yl) (%:)kjﬂkz!'kn!(l) (2) ( ) ( )
where the sum is over all non-negative integral values of k; to k,, such that k; + 2k, --- +
nk,, = n, or what is the same thing, over the set o(n) of all partitions of n.
Suppose that a polynomial p,(z) can be written in the form

Pn(z) :ﬂcﬂ(fl,.fZa"'»fn)a (22)

where the f;’s are functions of z and u is some constant. We call (2.2) the C,,-representation
of pn(z). The concept of C,-representation first began when several authors like Gessel,
Konvalina and MacMahon (as mentioned in [7]) expressed some polynomials and number
sequences in the form of the cycle indicator C,, of the symmetric group.

The cycle indicator method of finding asymptotic expansion of some polynomial se-
quences uses the C,-representation of such polynomials.

Suppose that we wish to find an asymptotic expansion of the polynomial p,(Az) as
n — 00,A — oo such that n = o(A/2),

Assume that p,(Az) can be written in the form p,(Az) = %C"(fl,fz, -++, fn), where
fi = a; + bz for each i,i = 1,2,3,---,n, and a;,b; are bounded coefficients. Then it
follows from (2.1) that

v a9 by 3 a ’n
pa(3e) = 30 (BN + A (3 bedat

a(n) kilka! - k!
_n—l (al+b1/\z)k|(221+l_r;_,\z)k2...(“_nu+kﬂu_/\z)k,,
B thot... !
J=0a(n,n—j) kl.kz. kn.
n—1 n
n—-j 1 a; bi k;
- Z a0 jcj(a + 52,

3=0 a(nn—jy)i=1

with A a large real parameter. The second equality uses the fact that o(n) = Up_,o(n, k)
where o(n, k) denote the set of partitions of n with number of parts equal to k, i.e.,

o(n, k)= {10125 ...nbn k) 4 Oky + -t nkn =ik + ka4 o+ kn = k)

Letting U; = 3, (n—j) [Tic I%(%{ + ’%z)k‘, we have p,(Az) = Z;‘;& An-iy;. For j =
0,1,2,3, subsets o(n,n — j) of #(n) can be found readily. Table 1 displays the values of

ky,kay -+, ky for  =0,1,2,3.
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Letting w; = %, 8; = %i, we have

A :(Zi—z)!(‘”‘ t B2y *ws + Baz),

U = ! i B s + Boz) ¢
(—nflm(wl + Prz)" " Hwe + B2z2)?,

s = ! i+ Al + Bz

(—n—i5—)!(w1 + B12)" " (wz + B2z)(ws + Baz)+

(7—1—6)@(“)1 + Br2)" (w2 + Ba2)°.
k=n-—j ky ky ky ky kg -0 ky
n—{( 0 0 0 0 0 - 0
n—1 n-2 1 0 0 (| I |
n—~2 n—-3 0 1 0 0o - 0
n—2 n—4 2 0 0 0 - 0
n—3 n—4 ( 1 0 - 0
n—3 n—-5 1 1 0 0o - 0
n—3 n—6 3 0 0 0 .. 0

Table 1
Now, p.(Az) can be written

A wy + By 2)" =

p"(Az) = - + Z A"_jUj,
’ i=1
For j > 1, define W; = g = ——%—U;, with W, = 1. In particular

Wi =(w + fr12) " *(w2 + B22)(n)2
Wa =(w + 1) (s + faz)(m)o + 5(w1 + B22) *wz + faz)(n)s
W3 =(w + f12)"*(wa + Baz)(n)a + (w1 + f12) ° (w2 + B2z)(ws + Baz)(n)s+
01+ 1) (wn + Baz ().
In general, for j > 1,
W, =(w1 +B12) U N wjsr + Bjp12)(n)jsr + - +
%(wl 1 B22) Y (wy + Brz) (m)as,
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where (n), := n(n —1)(n —2)---(n— k + 1),k > 1, the kth falling factorial of n. We see
that W; is a polynomial in n of degree 2j with Wy = 1. We may rewrite (2.3) as follows

pa(Az) = M[l + Z W;( )J']. (2.5)

Theorem 2.1 Suppose that p,(z) has the C,-representation

pu(2) = S Calfisfor o o),

where the f;’s are linear functions of z,i = 1,2,---,n. Let n and A become large such
that n = o(A}/2) as A\ — oco. Then an asymptotic expansion of p,(Az) for any z € C with
w1 + B1z] > 0 is given by

nIA~" pamts -
————pu(Az) =1+ W27, 2.6
(w1 +,312)"p (2] ; ’ (25)
where W is given in (2.4).
Proof Let w,, = m+1 W;A79. To prove the theorem, first, we have to show that

{W;(1/))7} is an asymptotic sequence as A — 0o, under the condition n = o(A'/2). But
this follows easily since
Win(3)H

Wj(%)j /1\6( 2J+2)6(n2j) = :1\‘6(712) — 0 as A — oo. (2.7

Second, we will show that for any m,m > 1,w,, = o(W,, A™™) as A — oo with n = o(A1/2).
We do this as follows:

W _ 1 Wm+1 _]-_Wm+2 1 Wm+3

Wod™ X W T X W X W
:le+1 1 Wiy Wm+2+
A Wm Az Wm Wm+l
1 Wog1 Wings Wiy b
A3 Wm Wm+l Wm+2
From (2.7) we have }W'"m‘ = O(5 ), > &I_f = 0(% ) -. Thus there exist constants
c1,¢z, -+ (constant with respect to A, and n), such that
wm n? n2 n? n?
n? n? n? n?
| = T[Cl +ea(5) + el ) +C4(_) ]
For any fixed z € C,|ci| < K, for some constant K, for each i, = 1,2,---. Since
n = o(A/2) as A — o0, it follows that Wogw — 0as A — oc0. O
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3. Some lemmas

Throughout the paper we will make use of formal power series over the complex number
field C. For any given power series f(t) with f(0) > 0 we denote logf(t) by f(t), where
the logarithm is taken to be the principal branch defined on C — {t : t < 0}. Also we write
f(k) in the power series form

f(t)=fj[£]t",

n=0

where [ i denotes the coefficient of t" in the Maclaurin series expansion of f. These

notations were adopted from [6].
The Cr-representation of a polynomial may be obtained using the following lemma (cf.

Theorem 1 of [6]).

7
n

[=<)
n=0

Lemma 3.1 Let (t) be the formal power series ¢(t) = ¥ t™ with ¢(0) > 0.

so(t) }t". Then
n

Suppose that ¢(t) has the series expansion ¢(t) = Y g

e [tz [2])
@

n!
where i denotes the coefficient of t/ in the power series expansion of .

The Poisson-Charlier, weighted Touchard, Toscano and Angelescu polynomials may
be defined through their generating functions given, respectively, by equations (3.2)-(3.5)

below.

eterlog(l+t) _ Z(PC)n(Z)t", (3.2)

n=0
(1 —t) " exp[z(e! - 1)] = Z TE(z)t", p> 0, (3.3)

n=>_0
e’ explz(1 — €')] = Z(Tos)ﬁ(z)t", p>0, (3.4)

n=0

1 2t i
= A ()" 3.5
TET R n; (2) (3:5)
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Lemma 3.2 Let p > 0 and z € C. Then we have the C, -representations

(PC)u(2) = %Cn(l +z,—z, 0, (=1)"12),

1 z

Ti(z) = —Culp + o
1 p—2 —z -z

(Y= —o(P— 2 2 ... %
(Tos)(z) = SO 7 o
1
n!

z
P+F,'»P+( )1

_
n - 1)!
Ay (2) = =Cp(-1=-2,1 -2z, ,(-1)" = nz).

Proof We will derive the C,,-representation of the Poisson-Charlier polynomials (PC),(z).
The others can be done similarly. Let ¢(t) = ete?lor(1+t) Then ¢(t) = t + zlog(1 + ¢).
For ft| < 1,log(1+¢t)=t-% + & —.. hence p(t) =t+z(t~ 4 + & — &£ +--). Thus

i

Applying Lemma 3.1, we have

I REET ifn=1,
B ——(_1)"—11, ifn>1.

n

(PCu(z) = CulL+ 2, -7, (~1)"2). O

The next two lemmas are useful in the estimation of remainders.
Lemma 3.3 Let 1%12%...0k ¢ g(n,n — 5),0 < j < n — 1. Then we have
Z n! 3 n-1 n! < n2i
elnmei) kylko! - k! \n—1-3 ) (n—j)! gt

Proof The equality in the lemma is an identity which may be found in [2] (cf. theroem
B of §3.3). The inequality easily follows. O

Lemma 3.4 Let j > 1 and let 1M2% ... n* c o(n,n~j). Thenn—-2j < ky <n-j-1.
4. The Asymptotic Expansions

Suppose p > 0 and p = O(A) as A — oo. Let ( = 1/A,v = p/A. Now we will apply
the discussion in section 2 to the polynomials with C,.-representation given in Lemma 3.2.
We state the results in the following theorems.

Theorem 4.1 Let n and A become large such that n = o(\'/?) as A > co. Then for any
given m > 1 and any z € C such that |1 + Az| > 0 for large A, an asymptotic expansion
for the Poisson-Charlier polynomials is given by

n! m )

————(PC),(Az) = B;A77 + by, .
e (PO = 1+ Y B 4 by (4.1)

=1
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where

o nl (C+ 2 (=z/2)% - ((-1)""1z/n)*n
B; = T a(g.:_,-) T k] : (4.2)
and B
b= Y. BjAT =o(BpA™™) (4.3)
Jj=m+1
as A — oo.

Proof A Poisson-Charlier polynomial of degree n has the C,-representation

1
(PCln(Az) = JC,,(I +Az,-Xz,- -, (1) 1A2)
) S (C+2) =2/ (1) /)
B Z Z kylka! - k!
a(nn—j)
Taking U; = ¥y pum_)y (C+z)k1(—z/2)ki,. (_( 11" lz/n)*u’ 7 > 0, we have W; ((+z)"U By

AR z m
(2.5) we may write (PC),,(A2) = (<+ ) [1+E L BjA™7+b,,), where B; = W Lo(nm-j)

S Z/kzx).k-q.,.,.(( 1"'2/m)"™" Now the theorem follows from Theorem 2.1. O

The next theorems are proved similarly.

Theorem 4.2 Let n and A become large such that n = o(A!/?) as A - co. Then for any
given m > 1 and any z € C such that |p 4+ Az| > 0 for large A\, an asymptotic expansion
for the weighted Touchard polynomials is given by

———T‘” Az) =143 DA+ d,, 4.4
G0 = 1+ 50, (44
where M /24 2/2) - (v/n + 2/nl)}
n! (v+ 2)"(v/2 4+ 2/2)% .. (v/n + z/nl)"
D; = 4.5
J (l/ + Z)" a(nzu:—-j) kl'kzl v k“! ! ( )
and .
Y Dix=o(D AT (4.6)
j=m+1
as A — o0.

Theorem 4.3 Let n and A become large such that n = O(A/2) as A — oco. Then for any
given m > 1 and any z € C such that |p + Az| > 0 for large A, an asymptotic expansion
formula for the Toscano polynomials is given by

mm

(Tos)(Az) =1+ Z E;A7 + e, (4.7)

J=1

n'

(p— Az)
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where

. nl (v — z)k1 (—2/2)%2 ... (—z/n!)kn
Ej= =2 ”(g;_j) kylky! - k! ’ (48)
and
ZEAJ— o(EnA™™) (4.9)
~ j=m+1
as A — oo.

Theorem 4.4 Let n and A become large such that n = o(A\'/?) as A — co. Then for any
given m > 1 and any z € C such that |1 + Az| > 0 for large A, an asymptotic expansion
formula for the Angelescu polynomials is given by

! m »
(_11_1—,\,,)%“('\-’—) =1+ ,; FiA™ + fm, (4.10)
where
.= n! (_C“z)kl(('/2—z)kz...((_l)nc/n_z)k,.
Fj= (—¢-2)" a(§ J) kol kol , (4.11)
and .
Y. Fidj=oFud™™) (4.12)
j=m+1
as A — oo.

5. Remainder estimates

The next theorems give estimates of the remainders defined in Theorems 4.1-4.4, within
some specified domains.

Theorem 5.1 Let n and A become large such that n = o(A\'/2) as A — co. Then for any
given m > 1 and for sufficiently large A, the remainder b,,, defined by (4.3) satisfies

2 (m+1) ,,2
|CZ" |+1) (7; ) +1, (5_1)

for any nonzero z with Rez > —(/2, and

3 |21/1¢ + 2| )"‘“("2 ym+1
(m +1)! A

lbm| <

[bm| <

, (5.2)

for any z # —( with Rez < —(/2.

Proof Notice that for nonzero z with Rez > —(/2, |( + z| > |z|, Thus,

|B;| <

S i g S A SR

|C + I kilkg! - k! - |C + Zln kilko! - kn'

a{nn—j) a(nn—j)
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Using Lemma 3.3, |B,| < Consequently,

|C+=|’ J'
ks +z ~J n?
|bm] < Z IBJ|,\J< Z IC | (/\)J
j=m+1 j=m+1
< I + 2|~ (m+l)(n2)m+1[1 + o + p +--]
(m+1)! ‘A m+2 (m+3)(m+2) '

2

where p = |( + z|7}(%). Since n = o(A!/2) as A — 0o, p < 1 for sufficiently large A with
z fixed. Hence,
|C+Z| (m+1) n? m+1

D (x)
Next we consider the case when Rez < —(/2. Notice that |z| > |( + z|, whenever Rez <
—(/2. Thus, for z # —(,Rez < _—2(

n!
1Bil < € +20" Z

lbm| <

|C + z|k| |z|k2+k3+"'+kn
kilky! - ky!

n-j)

Let J = |¢ 4 z|Ft|z|F2ths+~+%n By Lemma 3.4, k; = n — 2§ + d for some integer d > 0,
hence

- |C + zln—2j+d|2|n—j—(ﬂ—2j+d) — |< + Zln—2j+d|z|j—d
g i lC+ 28 PR
=10 2P R <

This gives |B;| < (H—er) Y a(nn—j) m (r%zLF J, . Consequently,

bl < ity < 5 (2L p Ly
U N S
= ( | 2] )m+l 1 ("_2)m+1[1+ a + o? ]
1€ + 2|2 (m+ 1)1 A m+2 (m+3)(m+2) '

where a = ’?lﬂ-r_r(";) Since a < 1 for sufficiently large A,

1 2

3 |Z| m 1
(m+1)|(_) *

bl < =
el < 3\

)rn+l

which is the desired result. O

Theorem 5.2 Let n and A become large such that n = o(A!/?) as A — oo. Then for any
given m > 1 and for sufficiently large A, the remainder d,, defined by (4.6) satisfies
3|l/+ | (m+1) n2 1

d.l < ,
ol < ST (X

(5.3)
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for all z such that Rez > 0. If Rez < 0,z # v, (5.3) still holds for A > p/|z|.

Proof If Rez > 0,
z

= (5.4)

z v
[u+z|>|u+al>|g+

for all k,k = 2,3,---. Thus,

\D;| < n! Z v + z|frthatotbn |y g gnd n!
szt &~ klkl ok vtz LR
o(nn—j) o(n,n—j)
Using Lemma 3.3, |D;| < +z, . Consequently,
n-1 j 2
il < ¥ o< § AT,
j=m+1 j=m+1
IV Z| (m+l)(n2)m+1[ 1+ B + ﬂz + ]
(m+1)! A m+2  (m+3)(m+2) '

where 8 = |v + z|_1(§). Since n = o(A}/2) as A — 00,8 < 1 for sufficiently large A, with
z fixed. Hence
3y 27ttt a2
2 (m+1)! A7

If Rez < 0,z # —v, we only need to show that the first inequality in (5.4) is true when
A > p/|z|. To do this let z = re*” and solve for A the inequality

|l <

v+ re®| > |v+re/Rk. O

Theorem 5.3 Let n and X become large such that n = o(\'/?) as A — oo. Then for any
given m > 1 and for sufficiently large A, the remainder e, defined by (4.9) satisfies

3|v —z|7tmH) m?
lem| < 2 mi1) T) , (5.5)

for all nonzero z such that Rez < v/2, and

312l/lv — z)y™*+! n?

2 (m+ 1) (,\)mH' (5.6)

lem| < 3

for all z # v with Rez > v/2.
Proof It is clear that for all nonzero z with ®z < v/2 we have
lv — z| > |z| > |z/k!|, Vk=2,3,4,--

and when Rez > v/2 with z # v,|z| > |v — z|. Now the proof follows similar arguments
as that of Theorem 5.1. O
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Theorem 5.4 Let n become large such that n = o(A\/?) as A — co. Then for any given
m > 1 and for sufficiently large ), the remainder f,, defined by (4.12) satisfies

3|z+cl—(m+l) n_2. 1

|fm] < 2 (m+1) A ) (56.7)
for all z with Rez > 0, and
3lz=¢/2/lz+ ()™ 2

for all z with Rez < (.

Proof It can be seen easily that for all z with Rz > 0, |2+ (| > [z {/k|, Yk =2,83,---,
and for all z with Rez < —(, we have

|2 =¢/2[ > [z +l, |z - (/21 2 [z £ (/kl, VE=2,3,---.
The proof follows similarly as in Theorem 5.1. O

Remarks Some applicability and limitation of the asymptotic formulas (4.1), (4.4), (4.7)
and (4.10) may be illustrated by mentioning a few examples. Taking A = nI'(n + 1) with
I'(z), the gamma function, and let z € C with |z| = 1,

2 n? 1

n
50— = = 0
0’/\ nl(n + 1) (n—l)!_' AR

1
¢=x
and |{ + z| ~ 1 as n — 00, so that the asymptotic expansion, for (PC),(Az) and A,(Az)
may be obtained via (4.1) and (4.10), respectively, with remainder estimates of order
(=)™ = O(((m — 1))~(m+0),

Similarly, taking p = n,A = n?logn,z € C with |z| = 1, we have

1
v = n = ~0 as n — oo,
n2logn nlogn
n? 1
— = —0 as n — oo,
A logn

and [v+z| ~ 1,|Jv—z| ~ 1 as n — 00, so that the asymptotic expansion for T\"(zn? log n)
and To:;("")(zn2 logn) can be found via (4.4) and (4.7), respectively, with remainder esti-
mates of order O((logn)~(™+1)),

If A = |z| the asymptotic expansions hold true whenever n = o(|z|'/?) as |z| — o
along a fixed direction 6.

However, the asymptotic formulas obtained in this paper do not apply when n = A,
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Sheffer Iz HY LRI

C.B. Corcino
(Mindanan MZ KSE¥¥E R, ERER SR IR 9700)

W B AXFAAGCHITPRESFERRR L RET Sheffer WEITA 4 #iE R
FAXRKRTUG T XRITR T rB8HEAXMZHERE.
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