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Abstract: We prove structural theorem for completely simple I-semigroups and semi-
groups with a completely simple I'-kernel.
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1. Introduction

Let M and T be two nonempty sets. M is called a I'-semigroup if the following condi-
tions are satisfied (1)(aab)€é M and « € I',(2)aabBc = aa(bfc) for any a,b,c€M,a,B €T.
A right(left) T-ideal of a I'-semigroup is a nonempty subset I of M such that ITM CI(MT1I
C I). If I is both right and left I-ideal, then we call I is a I'-ideal of M. A I'-semigroup M
is called a I'-semigroup with a completely simple I'-kernel I if M has a completely simple
I-ideal I. An element of a I'-semigroup M is called a a-idempotent if eae = e for a € I'.
Let E be the set of all idempotents of I'-semigroup M. We define the partial order relation
won E by ewf if and only if (a,8 € T')(eae = e, fBf = f,e = eaf = fBe). Define a.bin M
by a.b = aab for a,be M, then M is a semigroup. Denote this semigroup by M, and call it
the interrelated semigroup of M. Let M; be a I'y-semigroup and M, be a I';-semigroup. A
pair of mappings f;:M;— Ms and f:T'; —T5 is said to be a homomorphism from (M,;,T)
to (M2,T2), if (aad) fr = (afi)(af2)(bfr) for all a,be My, and a € T'1.If f; and f, are both
bijections then (fi, f2) is said to be an isomorphism of (M;,I'1) onto (M;,T'3).

Let G be a group and I, A be index sets and T be the collection of some A xI matrices
over GY the group with zero. Let u’ be the set of elements (a);, where i€I,A € A and
(@)ix is the T x A matrix over GY having a in the i-th row and A-th column, its remaining
entries being zero. The expression(o);, will be used to denote I X A zero matrix. for any
(@)ir, (), ()ky € p°. Then it is easy to verify that

((@)ira(d);k]B(e)ry = (a)ire[(b)juB(c)rv]-
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Thus u* is a I'-semigroup.

We shall call T the sandwich matrix set and u° Rees I x A matrix -semigroups over
G° with sandwich matrix set I' and denote it by u®(G : I, A;T). Sandwich matrix set
T is called regular if for each row i€l there exists a matrix a = (pj;) € T’ and for each

column A € A there exists a martix g = (q‘f,) € T such that A = (p;) has at least one
nonzero entry in i-th row and 8 = (qz‘j) has at least non-zero entry in A-th column, then
%G : I, \;T) is called a regular Rees I x A matrix I'-semigroup and it is denoted by
oG : I,\;T). Let u[G : I, \;T] be the set of all elements (a);, where ¢€I,A € A and
(a)ix is the I X A matrix over G and T be the collection of some A X/ matrix over G,
then u[G : I, A;I] is a completely simple I'-semigroup. It is clear that the inter-related
semigroup u°[G : I A\;T)a of u°[G : I, A\;T] may be not a completely 0-simple semigroup.
In 1989, Seth.A. shown in [1] that a I'-semigroup is a completely 0-simple I'-semigroup
if and only if it is isomorphic with a u°[G : I, A;T]. In this paper we first prove that a
I'-semigroup is compeletely simple if only if it is isomorphic whith a u[G : I, A;T], then
we give a structural theorem for semigroups with a completely simple I'-kernel. Unless
otherwise defined our notations will follow that of [1-4].

2. Main result

Lemma 2.18! Let M be a I'-semigroup. Then the following conditions are equivalent:
(1) M is a completely simple T'-semigroup;
(2) Mg is completely simple for any a € T;

(3) M, is completely simple for some a € T;

(4) M, is regular and every idempotent of M, is minimal for some a € I.

Theorem 2.2 A I'-semigroup is completely simple if and only if it is isomorphic to a
BlG : I, \;T].

Let M be a completely simple I'-semigroup. Then MUOQ is a completely 0-simple T-
semigroup where 0aM = 0 for any a € I'. By the Rees theorem for I'-semigroups in [1]
and for semigroup in [5] and the Lemma 2.1, it is not hard to obtain the results of theorem
2.2

Let M be a nonempty set and I be a set of operations defined on M. M is called a
partial I'-semigroup if za(yBz) = (zay)pz for any z,y,z€ M and a,B € T.

Let u[G : I, \;T] be a Rees matrix I'-semigroups over a group G, and M be a partial
I'-semigroyup such that GxI x A NM = ¢, where there exists a bijection ¢ : @ — o' from
T onto I'.

Let £* : p — £ be a mapping from M into the semigroup T(I) of all the mappings of
I into itself, and #* : p — 13 be a mapping from M into the semigroup T(A) of all the
mappings of A into itself where a € T , p,qEM.

(i) If pa'qe M, then €8, = ¢P€3 and 7, = nfng forang B € T.

(i) If pa’geM, then €365 = Eff;’ = const and nﬁn;’ = ngng = const for any B €T.

Again, let ¢, : M xI—-G be a mapping for a € T’ such that

(iii) If pa’qe M, then pg(pa’q,i) = pa(p,i€? )pp(g,i) for any g € T.

(iv) p‘;ifgqpﬁ(p,i)(pfn;.’.)”l does not depend on i and B.



The term from (iv) is denote by ¥,(p, A).

Let us define a mulitiplication set I'” on Y. = GxI x AUM with

(1) There exists a bijiection ¥, : o” — a from I'” onto I'(there exists a bijiection
Y5:a” — a' from T onto IV, too)

(2) (a;4,A)a”(b; 5, p) = (a;4, Na(b; j, p) = (ap$;b;4, p) for (a;i,A), (b5, p)EGXT x A.

(3) pa”(a;i,A) = (palp,i)a; i€y, A) for pe M and (a;2,A)eGxT x A.

(4) (a;4,N)a’p = (a¥, (p,/\) i, /\np) for pc M and (a;i,A)€GxI x A.

(5) If pa’qe M, then pa’q = pa’q € 3. = GxI x AUM for p,qe M.

(6) If pa'ge M, then pa’q = (pa(P, 5 )Pa(9: D)(PSyane:) 11 85 ES, Mg ng), for p,geM
and 1€ M and i€1,) € A.

We will denote)” with a multiplication set I by u[G : I, A;T].

Theorem 2.3 u[G : I,\;T"; M, ¢, ¥,£,n] is a I''-semigroup with a completely simple
I"-kernel u[G : I, A\;T"].

Proof It is obvious that aa”b € u[G : I,A;T", M, p,¥,n]for any a,b € pu[G : I, \;T", M, o,
¥,n] and a” € T. By (2) and (5) we can get (aa”b)3"c = aa”(bf"c) on M, or GxI X A.
Let p,qe M,(a;i,A),(b;j,u)€GXT x A, and a”,3" € T”. Then by (3) and (2) we have

[pa’(a;3, M)B"(b: 5, ) = -+ = (palp, ))ap};bii€5, ).
By (4) and (2) we can obtain
[(a54,2)a"(b; 4, 1)]8"p = (ap};bi3,1)8"p = - - = (apS;b¥a(p, 1); i, ps)-
ie, [(a;i,A)a”(b; j,1)]B"p = (a; i, A)a"[(b; j,1)B"p]. By (3),(4) and (2) we have that
[(a;4,2)a"18" (b; 5, 1) = (a¥a(py )i, An)B" (i 5, 1) = === = (@ pa)Pre b3, 1)
ie., [(a;1,X)a"p]B"(b; j, 1) = (a;3,A)a”[pB" (b; j,)]. Similarly, we have
[pa”(a;1,A)]8"q = pa”[(a;i,2)8"q].

Let p,geM,pa’qe M, ", 3" € T and = = (a;¢,5). Then by (2),(¢i¢) and (3) we get

[pa"q)B"z = (pa'q)B(aii,5) = -+ = (pa(p,i7)ep(e,)a; iE)ET )
ie., [pa”q)f"z = pa”[gB”z]. It follows from (ii), (iii), (iv) and (4) that
z8"(pa"q) = (a;4,5)8" (pa'q) = --- = (a¥p(p, 1) Valg, s 4, i),

(28"pla"q = [(a;4,5)8"pla"q = (a®p(p, ) Valq, inls i, srins),
ie., z8"(pa"q) = g(p,j)¥al( q,jng . Let p,qEM,pa”qEM and (z;k,1)eGxI x A. In this

case
Qpa _ popo Boa _ a o _
£q Ep e Eq P const, 7],;77(; - 77,) T’q - const.
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for any 8 € T'. It remains to prove that ¢.(p, kff)cpg(q, k)(pfn;.'n:;k)_l does not dependent
onkand § €T, and

@a(p, k€ )P, k) (PRagngi) ™ = 10 = (Plpenes ) Walpr ) Eale, ).

Since kfffg(fffg = const) and ¥.(p,a)¥.(g,an;) not depend on k and G, it follows
that p.(p, kfg)gaﬂ(q, k)(pi’;;n:’.)‘1 does not depend on k and 3, too. Hence

Pal(P, k€S )Pa (0, K) (PRyonar) ™ = Palp, €5 )0alg k) (Pagngs) "
By (6) and the above equivality we have
pla"q)B" (z; k, 1) = - = (palp, k€ )pp(g, k)z: i€, €7, 1)

On the other hand

pa”[gB"(z; k, 1)pa” (ps(g, k)z; k€5, 1) = (palp, kED )pp(g, k)2 kEFES 1),

€36 = keles.

Thus [pa”q)8"(z; k,1) = pa”[¢8" (z; k,1)]. Again since

(z: k,)8"[pa"q] = (2; k, )B"(pa(p, i€ )¢al, ))(Pngnei) 11165 Ep, Mipng)

= .-+ = (2¥5(p, ) Tulg, In)); k, AnS3),

and
[(z; k,1)8"pla"q = (za(p, 1) k,inl)a"q = (z¥s(p,1)¥(q, 10 ); k, I3
It is clear that u[G : I, A\;T"; M, ¢, ¥,£,7] is a IT'"-semigroups. But it is clear that
HG I, AT Moo, 8, 6,7
has a completely simple I'-kernel u[G : I, A;T).

Theorem 2.4 A I'-semigroup S has aT'-ideal which is a completely simple T' subsemigroup
of S if and only if S is isomorphic to some u[G : I, \;T"; M, ¢, ¥, €, 7.

Proof Let a I-semigroup S have a I'-ideal k¥ which is a completely simple semigroup.
Then M = S\K is a partial I'-semigroup such that § = KUM = u[G : I, \;TJUM (K is
isomorphic to u[G : I, A;T'} by theorem 2.4).
Let peM,(1;¢,1)€K and a,8 € T. We have

pa(l;i,1) = (g;k,s)cK

where g = pa(p;i,1),k = i€, s = Iny;. So

(Palpii,); 600, 1055) = pal(1;4, Da((pik) " 5k, 1)) = - -
= (pa(p;i,0)ph,  (Pik) "1 o1 1)

— 4 —
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Hence Inp,; = 1, so that pa(1;i,1) = (cpa(p,z 1);4€5,,1).

Furthermore (o (93§, )i i€y x,3) = -+~ = (galpid, 15651, X). Thus a(pi, ) = alpi )
Le., p does not depend on A € A and i{7, =i, ie., E does not depend on A € A. Hence
pa(l,z,/\) = (@a; €5, A), where ¢ : M xI—G and £ : I—-1. Similarly

(L;4, A)ap = (¥alp, A); i, Ang ),

where ¥, : M xA—G,and 55 : A — A. Since [(1;7, A)ap]B(1;4,2) = (P,\;gf-‘Pﬁ(P, t);%,A),
50 ¥a(p, \)Prgg: = Prigp¥e( i), iy a(p,A) = ph.fpmpo‘(p,t)(pﬁi )"‘- And the term
Pf\',-eg‘f’ﬁ(p’i)(l’fngi)_l does not depend on i and 8. For pe M,(g;i,A)€K and a € T, we
obain that

pa(g;i,A) = -« = (palp, I)PE(PR) 19 85, A)
and

(g:1, M)ap = (g%a(p, A); 4, Anp).
Let p,ge M;page M and A, 8 € T, we have that

(Pag)B(1;4,2) = - = (pa(p, i€g)pa(g, i) ip €5, )
ie.,
ea(Pag, i) = Pa(p, i3 )Pa(g,1), i, = IESES
Similarly
(L4, M)B(pag) = - = (¥p(p, A)¥alg, Arp)s 3, M )-
Then
¥s(pag,A) = ¥a(p, A)¥alg, M)

and /\ngaq = /\nﬁnfl'. Again, for p,qe M ,page M and a, € T', we have

pag = (g;4,A) = (g;3, A)a((p5) 'k, A) =
= (PalP: k€ )Palg, k)(PSk) 15 RETES, A).

On the other hand

pag = (g,i,A) = (g;7,2) ((p,\k)_l k,A) =
= (pulp, k€Y pp(a, k) (Phy,)” ‘;k&‘,’&p, ),

pag = (g;i,2) = ((p};) %54, D)Blpag] = ((p)~* La(p, ) ¥alg, In)); . Infng)-
Thus 3¢5 = Efﬁg,nl‘,'n;' = nﬁnf;. From this we conclude that

9 = 0alp, kE)0alg k) par) ™t = (0) ' ¥alp, ) ¥alq, In3)

z_kE ’)1 A:ngng
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We have {57 = const = Ef{g,r);'r]g = const = ngnf; and g does not depend on k and 1.
Therefore
pag = (Pa(P, i€ )Pa(q, ) (PRnzng:) 1165 € Anpmg)-
So
S uG LT M;,%,8,1)
The other part of the result follows from Theorem 2.3.
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