On the Dimension for Multivariate Weak Spline Function Spaces *

XU Zhi-qiang, WANG Ren-hong
(Inst. of Math. Sci., Dalian University of Technology, Liaoning 116024, China)

Abstract: In this paper, the dimension formulaes of multivariate weak spline are discussed. The dimension formulaes of non-degree multivariate weak spline on a vertex are presented. The dimension formulaes on triangulation are also discussed. At last, the local supported bases of $W_3^1(I_1\Delta)$ are presented.

Key words: spline; weak spline; dimension.

Classification: AMS(2000) 41A15,65D07/CLC O174.51

Document code: A Article ID: 1000-341X(2002)01-0007-06

1. Introduction

It is well known that multivariate spline is a kind of fundamental tool for computational geometry, numerical analysis, approximation, and optimization. But one have often met a new kind of spline that is named as multivariate weak spline. The multivariate weak spline is defined by a piecewise polynomial which smooths only on a set of discrete points^[7]. The multivariate weak spline is important in finite element and CAGD and it is defined and discussed in [7,8]. In [7], the smooth condition and conformality condition about multivariate weak spline are presented. In [8], the B-net method for studying multivariate weak spline is discussed. In this paper, we will present some dimension formulations about multivariate weak spline spaces. To help make this paper self-contained the remainder of this section contains a brief statement of the relevant definitions. In this paper, $P_k(x,y)$ denotes the collection of all bivariate polynomials of real coefficients with total degree k, and $P_k(x)$ denotes the collection of all univariate polynomials of real coefficients with total degree k. $D^m P(x_i, y_i)$ denotes the collection of all univariate polynomials of real coefficients with total degree k. $D^m P(x_i, y_i)$ denotes the collection of all univariate polynomials of real coefficients with

Definition 1 Let l be a line segment, and the point set $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ lie on l. If |S| := card(S) is limited, and each point of S is an interior point of

^{*}Received date: 2000-02-25

Foundation item: Project supported by the National Natural Science Foundation of China (19871010, 69973010)

Biography: XU Zhi-qiang (1976-), male, Ph.D Candidate.

the line segment l, then S is called an appointed point set, and every point in S is called an appointed point.

Let D be a domain in R^2 , Δ be a partition of the domain D consisting of finite straight lines or line segments. An appointed point set is given on each inner edge. This partition is called an appointed point partition which is denoted by $I\Delta$. Let D_i , $i=1,\dots,T$, be all of the cells of Δ , and S_j , $j=1,\dots,L$ be all of the appointed point sets of $I\Delta$. Denote by $C^{\mu}_{(0)}(S)$ the set of functions with μ smoothness in each point of the given point set S. For integer $k > \mu \geq 0$,

$$W_k^{\mu}(I\Delta) = \{W(\boldsymbol{x},\boldsymbol{y}) \in C_{(0)}^{\mu}(S)|W(\boldsymbol{x},\boldsymbol{y})|_{D_i} \in \mathbf{P_k}(\mathbf{x},\mathbf{y}), \forall D_i, S = \cup_j S_j\}$$

is called a multivariate weak spline space with degree k and smoothness μ , $W(x,y)|_D$ denotes the restriction of W(x,y) on D. Let $\vec{\mu} = (\mu_1, \mu_2, \dots, \mu_L)$ is a L dimension vector. Then

$$W_k^{\vec{\mu}}(I\Delta) = \{W(x,y) \in \cap_{m=1}^L C_{(0)}^{\mu_m}(S_m) : W(x,y)|_{D_i} \in \mathbf{P_k}(\mathbf{x},\mathbf{y}), \forall D_i\}$$

is called a non-degree multivariate weak spline space with degree k and smoothness $\vec{\mu}$.

Theorem 1^[5] Denote by l the straight line: y - ax - b = 0. Let $p_1(x,y), p_2(x,y) \in P_k(x,y)$, and S be a set of points on the line l.Let $p(x,y) = p_1(x,y) - p_2(x,y)$. Then

$$D^j p(x_i, y_i) = 0, j = 0, \cdots, \mu, \forall (x_i, y_i) \in S$$

if and only if there exist $q(x,y) \in \mathbf{P}_{\mathbf{k}-\mu-1}(\mathbf{x},\mathbf{y})$, and $c_m(x) \in \mathbf{P}_{\mathbf{k}-\mu-(|\mathbf{S}|-1)\mathbf{m}-1}(\mathbf{x})$ such that

$$p(x,y) = (y - ax - b)^{\mu+1}q(x,y) + \sum_{m=1}^{\mu+1} (y - ax - b)^{\mu+1-m} (\prod_{i=1}^{|S|} (x - x_i))^m c_m(x)$$
 (1)

where $c_m(x) \equiv 0$ provided $k - \mu - (|S| - 1)m - 1 < 0$.

q(x,y) is called to be the smoothing cofactor on the line l, and $c_m(x)$ is called to be the weak smoothing cofactor of order m on the line l. Suppose that N edges passing through the interior vertex v. Let S_i be the set of appointed points on the *i*th edge: $y - a_i x - b_i = 0$. Similarly as the ordinary multivariate spline, the following conformality condition at the interior vertex v

$$H_v = \sum_{i=1}^{N} ((y - a_i x - b_i)^{\mu+1} q_i(x, y) + \sum_{m=1}^{\mu+1} (y - a_i x - b_i)^{(\mu+1-m)} (\prod_{(x_i, y_i) \in S_i} (x - x_i))^m c_{mi}(x)) = 0$$

holds.

The following conditions are called to be global conformality conditions

$$H_{v0} = 0, H_{v1} = 0, \cdots, H_{vn} = 0 \tag{2}$$

where $\{v0, v1, \dots, vn\}$ is the set of interior vertices of Δ . We have

Theorem 2^[7] Let $I\Delta$ be the appointed partition on D. $S(x,y) \in W_k^{\mu}(I\Delta)$ if and only if there exist the smoothing cofactor, the weak smoothing cofactor with order $m(1 \leq m \leq \mu + 1)$, and the global conformality condition are satisfied.

In this paper, we only consider a simple but practical case, i.e. the cardinality of appointed point set on each grid segment is 1 and Δ is a triangulation of a simply connected domain $D \subset R^2$. Denote the appointed point triangulation as $I_1\Delta$. The multivariate weak spline and non-degree multivariate weak spline over $I_1\Delta$ are denoted by $W_k^{\mu}(I_1\Delta)$ and $W_k^{\bar{\mu}}(I_1\Delta)$ respectively.

2. The dimension formulation for non-degree multivariate weak spline living on a vertex

Denote by St(v) the collection of cells in Δ sharing v as a common vertex. Let N be the number of lines and (x_i, y_i) be appointed point lying on the ith grid line. The cell between the ith grid segment and the (i+1)th grid segment is called the ith cell, where $1 \leq i \leq N-1$; The cell between the Nth grid segment and 1th grid segment is called the Nth cell. Denote by $W_k^{\vec{\mu}}(St(v))$ the non-degree multivariate weak spline space over St(v), where $\vec{\mu} = (\mu_1, \mu_2, \cdots, \mu_N)$. In this paper, we will consider the $\dim W_k^{\vec{\mu}}(St(v))$. Let $\mu_{\min} = \min\{\mu_i, i=1,2,\cdots,N\}$, $\mu_{\max} = \max\{\mu_i, i=1,2,\cdots,N\}$. We have

Theorem 3 If $k \ge \mu_{min} + \mu_{max} + 1$, then $dimW_k^{\vec{\mu}}(St(v)) = NC_{k+2}^2 - \sum_{i=1}^N C_{\mu_i+2}^2$ where N is the number of grid lines.

Proof Select an appropriate reference frame such that $(x_1, y_1) = (0, 0), x_N \neq 0$. Without loss of generality suppose $\mu_N = \mu_{min}$. Suppose that the polynomial defined on the *i*th cell is $P_i(x,y) = \sum_{n+m \leq k} a_{nm}^{(i)} x^n y^m$. Let $u_{nm}^{(i)} = \frac{\partial^{n+m} W(x_i,y_i)}{\partial x^n \partial y^m}, n+m \leq \mu_i$, where W(x,y) is the multivariate weak spline concerning the vertex v. According to the definition of $W_k^{\mu}(St(v)), u_{nm}^i$ and $a_{nm}^{(i)}$ are unknown variables, we get the coefficient matrix

where E is the identity matrix of order $C_{\mu_i+2}^2$, each A_i is a matrix of order $C_{\mu_i+2}^2 \times C_{k+2}^2$. The row vector of A_i is $\frac{\partial^{n+m}\mathbf{b}(\mathbf{x_i},\mathbf{y_i})}{\partial x^n\partial y^m}$, $n+m \leq \mu_i$, where $\mathbf{b}(\mathbf{x},\mathbf{y}) = (x^k,x^{k-1}y,\dots,y^k,x^{k-1},\dots,x,y,1)$. It is clear that A_i is a row full rank matrix. After a series of

transformations, the matrix A becomes:

Obviously, if $B = \binom{A_N}{A_1}$ is row full rank, then the matrix is also row full rank. Now to prove B is row full rank for $k \geq \mu_{min} + \mu_{max} + 1$. A_i can be written by $(\overline{A_i}, \overline{\overline{A_i}})$, where $\overline{\overline{A_i}}$ is a $C_{\mu_i+2}^2 \times C_{\mu_{max}+2}^2$ submatrix. It is easy to prove that $\overline{\overline{A_i}}$ is a nonsingular matrix. Because of $(x_1, y_1) = (0, 0)$, so $\overline{A_1} = 0$. Since

$$B = \begin{pmatrix} A_N \\ A_1 \end{pmatrix} = \begin{pmatrix} \overline{A_N} & \overline{\overline{A_N}} \\ \overline{A_1} & \overline{\overline{A_1}} \end{pmatrix},$$

we need only prove $\overline{A_N}$ is row full rank. Obviously, if $\overline{A_N}$ is row full rank for $k=\mu_{max}+\mu_{min}+1$ then $\overline{A_N}$ is also row full rank for $k>\mu_{max}+\mu_{min}+1$. Now we prove $\overline{A_N}$ to be row full matrix for $k=\mu_{max}+\mu_{min}+1$. After a series of primary transformations, $\overline{A_N}$ becomes

where

$$B_0 = \left(\begin{array}{ccccc} x_N^k & x_N^{k-1} & \cdots & x_N^{\mu_{\max}+1} \\ C_k^1 x_N^{k-1} & C_{k-1}^1 x_N^{k-2} & \cdots & C_{\mu_{\max}+1}^1 x_N^{\mu_{\max}} \\ \vdots & \vdots & \vdots & \vdots \\ \mu_{\min}! C_k^{\mu_{\min}} x_N^{k-\mu_{\min}} & \mu_{\min}! C_{k-1}^{\mu_{\min}} x_N^{k-\mu_{\min}-1} & \cdots & \mu_{\min}! C_{\mu_{\max}+1}^{\mu_{\max}} x_N^{\mu_{\max}-\mu_{\min}+1} \end{array} \right).$$

Since $x_N \neq 0$, it is clear that B_0 is a row full rank matrix. Similarly $B_1, B_2, \dots, B_{\mu_{min}+1}$ are row full rank matrices. Hence $\overline{A_N}$ is a row full rank matrix. Therefore the matrix A is row full rank matrix. The number of unknown variables is $NC_{k+2}^2 + \sum_{i=1}^N C_{\mu_i+2}^2$ and the rank of coefficient matrix is $2\sum_{i=1}^N C_{\mu_i+2}^2$. So the dimension of the space $W_k^{\vec{\mu}}(St(v))$ is $NC_{k+2}^2 - \sum_{i=1}^N C_{\mu_i+2}^2$. \square

3. The dimension formulation for multivariate weak spline on triangulation

In the section, we will presented the dimension of $W_d^{\mu}(I_1\Delta), d \geq 2\mu + 1$. We firstly introduce some notations. For triangulation Δ , Let T=number of triangles, E_I =number of interior edges, E_B =number of boundary edges, L= number of grid segments.

Firstly, we introduce the dimension of $W_{2\mu+1}^{\mu}(I_1\Delta)$. Consider the following problem.

$$D^{m,n}P(x_1,y_1) = D^{m,n}f(x_1,y_1)$$

$$D^{m,n}P(x_2,y_2) = D^{m,n}f(x_2,y_2)$$

$$D^{m,n}P(x_3,y_3) = D^{m,n}f(x_3,y_3), \quad m+n \le \mu$$

$$D^{m,n}P(x_0,y_0) = D^{m,n}f(x_0,y_0), \quad m+n \le \mu - 1$$
(3)

where $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ are three vertices of $\triangle ABC$, (x_0, y_0) is an inner point of the triangle, $D^{m,n}f(x_i, y_i)$ denotes $\frac{\partial^{m+n}}{\partial x^m \partial y^n}f(x_i, y_i)$, $f(x, y) \in C^{\mu}$, $P(x, y) \in \mathbf{P}_{2\mu+1}(\mathbf{x}, \mathbf{y})$. We have

Lemma 1^[7] The system (3) has a unique solution.

Theorem $4^{[7]} \dim(W^{\mu}_{2\mu+1}(I_1\Delta)) = TC^2_{2\mu+3} - E_IC^2_{\mu+2}$. Now we consider the dimension of $W^{\mu}_d(I_1\Delta), d \geq 2\mu + 1$.

Theorem 5 For $d \ge 2\mu + 1$, $\dim W_d^{\mu}(I_1\Delta) = TC_{d+2}^2 - E_IC_{u+2}^2$.

Proof According to the definition of multivariate weak spline, we know $w(x,y)|_{D_i} \in \mathbf{P}_d(x,y)$, where $w(x,y) \in W_d^{\mu}(I_1\Delta)$. Let $p_i(x,y) = w(x,y)|_{D_i}$ and $p_i(x,y) = \sum_{m+n \leq d} a_{mn}^{(i)} x^m y^n$. Suppose D_{i_l} , $1 \leq l \leq 3$ share an interior edge with D_i . Denote the appointed point shared by D_i and D_{i_m} as (x_{i_m}, y_{i_m}) , $1 \leq m \leq l$. We have

$$D^{h}p_{i}(x_{i_{m}},y_{i_{m}}) = D^{h}p_{i_{m}}(x_{i_{m}},y_{i_{m}}), h = 0, \dots, \mu, i = 1, \dots, T.$$
(4)

Denote the solution space of system (4) as H. Obviously, $\dim W_d^{\mu}(I_1\Delta) = \dim H$. There are TC_{d+2}^2 unknown variables and $E_IC_{\mu+2}^2$ linear equations in system (4). The coefficient matrix of the linear equations is denoted as H_0 . Therefore, $\dim H = TC_{d+2}^2 - \operatorname{rank}(H_0)$, where $\operatorname{rank}(H_0)$ denote the rank of H_0 . According to Theorem 4, $\dim W_{2\mu+1}^{\mu}(I_1\Delta) = TC_{2\mu+3}^2 - E_IC_{\mu+2}^2$. Hence, when $d = 2\mu + 1$, the matrix H_0 is row full rank. So, for $d \geq 2\mu + 1$, the H_0 must be row full rank. So, for $d \geq 2\mu + 1$, $\dim W_d^{\mu}(I_1\Delta) = TC_{d+2}^2 - E_IC_{\mu+2}^2$. \square

Remark When $d \leq 2\mu$, it is difficult for obtaining the dim $W_d^{\mu}(I_1\Delta)$. In [8], the dim $W_2^{\mu}(St(V))$ is presented. Using B-net method, the dim $W_2^{\mu}(I_1\Delta_{mn})$ is also presented, where Δ_{mn}^{μ} denotes type-1 triangulation.

We are interested in whether dim $W_2^1(I_1\Delta)$ is instability, i.e. whether dim $W_2^1(I_1\Delta)$ not only depends on the topology structure of Δ but also depends on the geometry property of Δ and appointed points.

4. Local supported bases for $W_3^1(I_1\Delta)$

In the section, we will consider the local supported bases for $W_3^1(I_1\Delta)$, where Δ is any triangulation. In fig.1, four local supported multivariate weak functions are shown. From left to right, these functions are called B^1, B^2, B^3, B^4 respectively. In Fig.1, we give the

values of B^i , i = 1, 2, 3, 4 at the geometric centers of the triangles (these values are placed inside the triangles) and also the values B^i , $D_x B^i$, $D_y B^i$, i = 2, 3, 4, respectively (given by the triples (\cdot, \cdot, \cdot)), at the appointed point lying on the interior grid edge. These values completely determine B^i with the exception of a translation.

Fig.1

By using the values in Fig.1, we can prove B^i and their translations are line independent. Moreover, we have

Theorem 6 The B^i , i = 1, 2, 3, 4 and their translations are local supported bases of $W_3^1(I_1\Delta)$.

References:

- [1] DE BOOR C, HÖLLIG K, RIEMENSCHNEIDER S. Box Splines [M]. Springer-Verlag, New York, 1993.
- [2] NÜRNBERGER G. Approximation by Spline Functions [M]. Springer-Verleg, Berlin, 1989.
- [3] NÜRNBERGER G, ZEILFELDER F. Developments in bivariate spline interpolation [J]. Jour. Comp. Appl. Math., 2000, 121: 125-152.
- [4] SCHUMAKER L L. Dual Bases for Spline Spaces on Cells [M]. CAGD, 1988.
- [5] WANG Ren-hong. Multivariate Weak Spline [M]. The National Conference on Numerical Analysis. GuangZhou, 1979.
- [6] WANG Ren-hong. Multivariate Splines Theory and Application [M]. Science Press, Beijing, 1994.
- [7] WANG Ren-hong, XU Zhi-qiang. Multivariate Weak Spline [M]. Submit for publication.
- [8] WANG Ren-hong, XU Zhi-qiang. Multivariate weak spline function space [J]. To appear in J. Comp. Appl. Math.

多元弱样条函数空间的维数

许志强, 王仁宏

(大连理工大学数学科学研究所, 辽宁 大连 116024)

摘 要: 讨论了多元弱样条一点处的维数公式及任意三角剖分下的维数公式. 得到了 1- 型剖分下 $W_3^1(I_1\Delta^1_{mn})$ 的维数与局部支集样条基.