The Second Separation Theorem in Locally β -Convex Spaces and the Boundedness Theorem in Its Conjugate Cones *

WANG Jian-yong¹, MA Yu-mei²

- (1. Dept. of Math., Changshu College, Jiangsu 215500, China;
- 2. Dept. of Math., Dalian University, Liaoning 116622, China)

Abstract: This paper deals with the locally β -convex analysis that generalizes the locally convex analysis. The second separation theorem in locally β -convex spaces, the Minkowski theorem and the Krein-Milman theorem in the β -convex analysis are given. Moreover, it is obtained that the UF-boundedness and the UB-boundedness in its conjugate cone are equivalent if and only if X is subcomplete.

Key words: locally β -convex space; β -subseminorm; β -extreme point(set); β -Minkowski functional; conjugate (topological) cone; subcomplete; UF - (UB)-boundedness.

Classification: AMS(2000) 46A16/CLC O177.3

Document code: A **Article ID:** 1000-341X(2002)01-0025-10

1. Introduction

Let $0 < \beta \le 1$ be a fixed number, let X be a vector space and A a subset of X. A is called β -convex if for every $x, y \in A$ we have $[x, y]_{\beta} \subset A$. Where

$$[oldsymbol{x},oldsymbol{y}]_eta:=\{\lambdaoldsymbol{x}+\muoldsymbol{y}:\lambda,\mu\geq0,\lambda^eta+\mu^eta=1\};$$
 $(oldsymbol{x},oldsymbol{y})_eta:=[oldsymbol{x},oldsymbol{y}]_etaackslash\{oldsymbol{x},oldsymbol{y}\}.$

In this paper we use $co_{\beta}A$ and $aco_{\beta}A$ to denote the β -convex hull and the absolutely β -convex hull of A respectively, θ the neutral element of spaces.

Definition 1.1 Let $B \subset A$ be two subsets of a vector space X. If for every $x, y \in A$, whenever $(x,y)_{\beta} \cap B \neq \Phi$ we have $x,y \in B$, then B is called a β -extremal subset of A. x_0 is called a β -extreme point of A if the singleton $\{x_0\}$ is a β -extremal subset of it. The set of all β -extreme points of A is called the β -extreme points set of A, and is denoted by $\text{ext}_{\beta}A$.

*Received date: 1998-12-22

Biography: WANG Jian-yong (1956-), male, M.Sc., currently an associate professor.

Let A be a β -convex set, a real-valued functional f defined on A is called β -convex if for every $x, y \in A$ we have

$$f(\lambda x + \mu y) \le \lambda^{\beta} f(x) + \mu^{\beta} f(y), \lambda, \mu \ge 0, \lambda^{\beta} + \mu^{\beta} = 1.$$

The set of all such functionals is denoted by $conv_{\beta}(A)$.

A nonnegative, subadditive and β -positively homogeneous (respectively, β -absolutely homogeneous) functional f defined on a vector space X is called a β -subseminorm, and we use X'_{β} to denote the family of all such functionals. (respectively, called β -seminorm, and use $X'_{a\beta}$ to denote the family of all such functionals.) When X is a topological vector space, we use X^*_{β} and $X^*_{a\beta}$ to denote the family of all continuous β -subseminorms and the family of all continuous β -seminorms respectively. The relation

$$X'_{\alpha\beta} \subseteq X'_{\beta} \subseteq \operatorname{conv}_{\beta}(X)$$

is clear. If $f \in \operatorname{conv}_{\beta}(X) (f \in X_{a\beta}^{'})$, then for every $a \in R$, the set

$$B(f,a) := \{x \in X : f(x) \le a\}$$

is β -convex (respectively, absolutely β -convex.)

When A is a star absorbing subset of a vector space X, we call the nonnegative-valued functional

$$P_{A_B}(x) := \inf\{t > 0 : x \in t^{\frac{1}{B}}A\}, x \in X$$

the β -Minkowski functional generated by A.

Definition 1.2 Let $0 < \beta \le 1$, a topological vector space X is called locally β -convex if there exists a θ -neighborhood basis of β -convex sets.

This paper deals with the locally β -convex analysis that makes the locally convex analysis its special case. The β -convexity is far more extensive than the linear convexity (the general convexity). When $0 < \beta < 1$, every nonempty β -convex set is restrained by θ (has θ as one of its limit point), so they have no translation invariant property^[2]. [2] studied some algebraic problems in the β -convex analysis, and obtained the first separation theorem. [1] and [6] obtained some fundamental properties about locally β -convex spaces and β -convex functionals, etc.. Until now, however, the theory and the applications of the locally β -convex analysis is far poorer than that of the locally convex analysis. The second separation theorem in locally β -convex spaces X, the Minkowski theorem and the Krein-Milman theorem in the β -convex analysis deduced from the second separation theorem are obtained, and a necessary and sufficient condition for the equivalence of the UF-boundedness and the UB-boundedness in its conjugate cone X_{β}^* is obtained.

2. The second separation theorem in β -convex spaces and the Minkowski theorem

The following lemmas are the basic facts in the β -convex analysis. Because they are not difficult to verity, we delete their proof.

Lemma 2.1 Let $0 < \beta \le 1$, and let A be a star absorbing set. Then

- 1. $P_{A_{\beta}}(x)$ is β -positively homogeneous;
- 2. when A is β -convex, we have $P_{A_{\beta}} \in X'_{\beta}$;
- 3. when A is absolutely β -convex , we have $P_{A_{\beta}} \in X_{a\beta}'$.

Lemma 2.2 Let $0 < \beta \le 1$, and let X be a topological vector space. Then

1. when A is a star absorbing β -convex subset of X, we have

$$int A \subset \{x \in X : P_{A_{\beta}}(x) < 1\} \subset A \subset \{x \in X : P_{A_{\beta}}(x) \leq 1\} \subset \overline{A};$$

2. let $f \in X'_{\beta}$, then $f \in X^*_{\beta}$ if and only if there is some a > 0 such that $int B(f, a) \neq \Phi$. Lemma 2.3 Let $0 < \beta \le 1$.

- 1. For each locally β -convex space, there is a θ -neighborhood basis cosisting of (open) β -barrels (absorbing, closed (respectively, open) and absolutely β -convex set).
- 2. A topological vector space X is locally β -convex if and only if there is a family of continuous β -(sub)seminorms $\{f_{\alpha} \in X_{\beta}^* : \alpha \in I\}$ such that $\mathcal{U}(\theta) = \{B(f_{\alpha}, 1) : \alpha \in I\}$ constitues a θ -neighborhood basis of X.
- 3. A locally β -convex space X is separated if and only if for every $x \neq \theta$, there is some $f \in X_{\alpha\beta}^*$ such that f(x) > 0.

Theorem 2.1 (The second separation theorem) Let $0 < \beta \le 1$, let X be a locally β -convex space. Let A be a nonempty closed β -convex subset of X and B a nonempty closed subset of X with $A \cap B = \Phi$ (for $\beta = 1$, still assume $\theta \in A$). Then if A or B is compact, they can be strongly separated by some continuous β -subseminorm, i.e. there is $f \in X_{\beta}^*$ such that $\max\{f(x) : x \in A\} < 1 \le \inf\{f(x) : x \in B\}$, if A is compact, and $\sup\{f(x) : x \in A\} \le 1 < \min\{f(x) : x \in B\}$, if B is compact.

Proof Let $\mathcal{U}(\theta) = \{U_{\alpha} : \alpha \in I\}$ be a θ -neighborhood basis of X consisting of open absolutely β -convex sets. Since A or B is compact, we assert that there is $U_{\alpha_0} \in \mathcal{U}(\theta)$ such that $(A + U_{\alpha_0}) \cap B = \Phi$, which is equivalent to $(B + U_{\alpha_0}) \cap A = \Phi$ as U_{α_0} is circled. Assume to the contrary, that the assertion is wrong, without loss of generality we may assume that A is compact. Then for every $\alpha \in I$, there exist $x_{\alpha} \in A, y_{\alpha} \in B$ and $z_{\alpha} \in U_{\alpha}$ such that $y_{\alpha} = x_{\alpha} + z_{\alpha}$. It is obvious that $\mathcal{U}(\theta)$ is directed under the set-theoretic relation \supset , i.e. for each pair $U_{\alpha_1}, U_{\alpha_2} \in \mathcal{U}(\theta)$, there is $U_{\alpha_3} \in \mathcal{U}(\theta)$ such that $U_{\alpha_1} \cap U_{\alpha_2} \supset U_{\alpha_3}$. Now it is obvious that $\{x_{\alpha}\}, \{y_{\alpha}\}$ and $\{z_{\alpha}\}$ turn into three nets and $z_{\alpha} \longrightarrow \theta$. From the compactness of A, there is some convergent subnet of $\{x_{\alpha}\}$. Without loss of generality we may assume that $x_{\alpha} \longrightarrow x_0$, then $y_{\alpha} = x_{\alpha} + z_{\alpha} \longrightarrow x_0$. Then we have $x_0 \in A \cap B$ because A and B are closed. This is contrary to $A \cap B = \Phi$. The contradiction means that the assertion holds.

Now let $U_{\alpha_0} \in \mathcal{U}(\theta)$ be such that $(A + U_{\alpha_0}) \cap B = \Phi$, and let $U_{\alpha_1} \in \mathcal{U}(\theta)$ such that $U_{\alpha_1} + U_{\alpha_1} \subset U_{\alpha_0}$. By $(A + U_{\alpha_1} + U_{\alpha_1}) \cap B = \Phi$ and the fact that U_{α_1} is circled, we have

$$(A+U_{\alpha_1})\bigcap(B+U_{\alpha_1})=\Phi \tag{1}$$

and then

$$\overline{(A+U_{\alpha_1})}\bigcap B=\Phi.$$
(2)

Since $A + U_{\alpha_1}$ is an open β -convex θ -neighborhood, by lemma 2.1 and lemm2.2 we have $f = P_{(A+U_{\alpha_1})_{\beta}} \in X_{\beta}^*$. From (2) we have

$$f(x) < f(y), \forall (x, y) \in A \times B.$$
 (3)

When A is compact, assume that f takes its maximum at x_0 , then

$$\max\{f(x): x \in A\} = f(x_0) < 1 \le \inf\{f(x): x \in B\}; \tag{4}$$

When B is compact, we can similarly obtain

$$\sup\{f(x): x \in A\} \le 1 < \min\{f(x): x \in B\}. \tag{5}$$

This completes the proof. \Box

Corollary Let X be a locally β -convex Hausdorff space, $x, y \in X$ and $x \neq y$. Then there is $f \in X_{\beta}^*$ such that $f(x) \neq f(y)$, i.e., X_{β}^* separates X.

Proof Since $x \neq y$, we have $y \notin [\theta, x]$ or $x \notin [\theta, y]$. Without loss of generality we may assume that $y \notin [\theta, x]$. For X is separated, $[\theta, x]$ and $\{y\}$ satisfies the condition of theorem 2.1, hence there is $f \in X^*_{\theta}$ such that $f(x) \neq f(y)$. \square

For a nonempty locally convex topological vector space X, it is well-known that its conjugate space X^* is big enough. When X is non-locally convex, it is possible that X^* consists of only one element θ , i.e. $X^* = \{\theta\}$. But if the space X is locally β -convex, X^*_{β} constains a great number of non-zero elements. For example, the space $L^{\beta}[0,1](0 < \beta < 1)$ is just such a space. When X is locally β -convex space, it is clear that X^*_{β} is a positive cone, called the conjugate cone of X. In this case, the locally β -convex topology and the conjugate cone X^*_{β} of X are determined by each other. As the applications of the second separation theorem, we now show the Minkowski theorem and the Krein-Milman theorem in locally β -convex spaces.

Theorem 2.2 Let $0 < \beta \le 1$, let X be a locally β -convex Hausdorff space and A a nonempty compact subset of X. Then $\exp A \ne \Phi$.

Proof Let \mathcal{A} be the family of all compact β -extremal subset of A, then $A \in \mathcal{A}$. Under the set-theoretic relation \supset , \mathcal{A} is a semi-order set (i.e. for $B_1, B_2 \in \mathcal{A}$, $B_1 \prec B_2 \iff B_1 \supset B_2$) and for each total ordering subset \mathcal{B} of \mathcal{A} , $\bigcap \{B : B \in \mathcal{B}\} \in \mathcal{B}$ is its upper bound. Then by the Zorn lemma there is a maximal element $C \in \mathcal{A}$. By the second separation theorem we can show that C is a singleton, so $\Phi \neq C \subset \text{ext}_{\beta}A$. \square

Lemma 2.4 Let $0 < \beta \le 1$ and B_1, B_2, \dots, B_n be a finite family of compact β -convex subsets of a topological vector space X. Then $co_{\beta}(\bigcup_{i=1}^{n} B_i)$ is compact and β -convex as well.

In fact, this can be seen from the compactness of $B_1 \times \cdots \times B_n \times A$ and the continuity of $f: B_1 \times \cdots \times B_n \times A \longrightarrow X$:

$$f(x_1, \dots, x_n, (\lambda_1, \dots, \lambda_n)) = \sum_{i=1}^n \lambda_i x_i.$$

Where $A = \{(\lambda_1, \lambda_2, \cdots, \lambda_n) \in \mathbb{R}^n : \lambda_i \geq 0, \sum_{i=1}^n \lambda_i^\beta = 1\}$ is compact in \mathbb{R}^n .

Theorem 2.3 Let $0 < \beta \le 1$, let X be a locally β -convex Hausdorff space and B a subset of X such that $\overline{\cos_{\beta} B}$ is compact. Then

$$\operatorname{ext}_{\beta}(\overline{co_{\beta}B})\subset \overline{B}\bigcup\{\theta\}.$$

Proof When $\beta = 1$, from [4] we have $\operatorname{ext}(\overline{\operatorname{co}B}) \subset \overline{B}$, we need only to show the conclusion for $0 < \beta < 1$. As $\overline{\operatorname{co}_{\beta}B} = \overline{\operatorname{co}_{\beta}B}$, there is no harm in assuming that B is closed, hence it is compact, too. By theorem 2.2 we have $\operatorname{ext}_{\beta}(\overline{\operatorname{co}_{\beta}B}) \neq \Phi$. Let $\theta \neq x_0 \in \operatorname{ext}_{\beta}(\overline{\operatorname{co}_{\beta}B})$, it is sufficient to show $x_0 \in B$.

Let $\mathcal{U}(\theta)$ be a θ -neighborhood basis of X consisting of β -barrels. For every $U \in \mathcal{U}(\theta)$, by the compactness of B there exists a finite family $x_1, x_2, \dots, x_n \in B$ such that $B \subset \bigcup_{i=1}^n (x_i + U)$. Let

$$B_i = \overline{\cos_{\beta}[([\theta, x_i] + U) \cap B]}, (i = 1, 2, \dots, n).$$

From $B_i \subset \overline{\cos_\beta B}$ we know that B_i are compact and β -convex. Then $\cos_\beta(\bigcup_{i=1}^n B_i)$ is also compact and β -convex by lemma 2.4. From $B \subset \bigcup_{i=1}^n B_i$ we have

$$\overline{\operatorname{co}_{\beta}B}\subset\overline{\operatorname{co}_{\beta}(\bigcup_{i=1}^{n}B_{i})}=\operatorname{co}_{\beta}(\bigcup_{i=1}^{n}B_{i}).$$

Then

$$x_0 = \sum_{i=1}^n \lambda_i y_i, y_i \in B_i, \lambda_i \geq 0, \sum_{i=1}^n \lambda_i^{\beta} = 1.$$

From $\theta \neq x_0 \in \text{ext}_{\beta}(\overline{\cos\beta})$ there is $1 \leq i_0 \leq n$ such that $\lambda_{i_0} = 1$, and for the other $j \neq i_0$ we have $\lambda_j = 0$. Let $x_0 = y_{i0} \in B_{i_0} \subset [\theta, x_{i_0}] + U$ (notice that the right is closed and β -convex). From the arbitrary property of U we have $x_0 \in [0,1]B = [0,1]B$. Because $\theta \neq x_0 \in \text{ext}_{\beta}(\overline{\cos\beta})$ we have $x_0 \in B$, this completes the proof. \square

It is not difficult to show the following lemmas:

Lemma 2.5 Let $0 < \beta \le 1$, let B be a nonempty subset of a topological vector X. Then for every continuous β -convex functional f defined on X we have

$$\sup\{f(x):x\in B\}=\sup\{f(x):x\in\overline{\operatorname{co}_\beta B}\}.$$

Lemma 2.6 Let $0 < \beta < 1$, let X be a locally β -convex space and A a nonempty compact β -convex subset of X. Let $f \in \text{conv}_{\beta}(X)$ be an upper semicontinous functional. Then the β -convex programming problem $\max\{f(x): x \in A\}$ has solution in $\text{ext}_{\beta}A$.

The following theorem is a generalization of the Minkowski theorem of locally convex analysis, see [4] and [9], etc..

Theorem 2.4 (Minkowski theorem) Let $0 < \beta < 1$, let X be a locally β -convex Hausdorff space and A a nonempty compact β -convex subset of X. Then for each $B \subset A$, the following conditions are equivalent:

- 1. $\overline{\operatorname{co}_{\beta}B}=A;$
- 2. $\sup\{f(\boldsymbol{x}): \boldsymbol{x} \in B\} = \max\{f(\boldsymbol{x}): \boldsymbol{x} \in A\}, \forall f \in X_{\beta}^{*};$
- 3. $\operatorname{ext}_{\beta}A\subset \overline{B}\cup\{\theta\}$.

Proof From lemma 2.5 we know that (1) implies (2).

When $x_0 \in A \setminus \overline{\cos_{\beta}B}$, $\{x_0\}$ is closed and $\overline{\cos_{\beta}B}$ is a compact β -convex set. By the second separation theorem there is $f \in X_{\beta}^*$ such that

$$\sup\{f(x): x \in B\} = \max\{f(x): x \in \overline{\cos_{\beta}B}\} < 1 < f(x_0) \le \max\{f(x): x \in A\}.$$

This shows that (2) implies (1).

When $\operatorname{ext}_{\beta}A \subset \overline{B} \cup \{\theta\}$, for every $f \in X_{\beta}^*$, by lemma 2.6 there is $x_0 \in \operatorname{ext}_{\beta}A \subset \overline{B} \cup \{\theta\}$ such that $f(x_0) = \sup\{f(x) : x \in A\}$. As $f(\theta) = 0$, no matter $x_0 = \theta$ or $x_0 \in \overline{B}$, we have

$$\max\{f(\boldsymbol{x}): \boldsymbol{x} \in A\} = f(\boldsymbol{x}_0) \leq \sup\{f(\boldsymbol{x}): \boldsymbol{x} \in B\},\$$

i.e., (3) implies (2). The fact that (1) implies (3) can be got from theorem 2.3. \Box

Corollary 1 (Krein-Milman theorem^[6]) Let $0 < \beta \le 1$, let X be a locally β -convex Hausdorff space and A a nonempty compact β -convex subset of X, then $A = co_{\beta}(ext_{\beta}A)$.

Corollary 2 Let $0 < \beta \le 1$, let X be a locally β -convex Hausdorff space and B a nonempty subset of X such that $\overline{aco_{\beta}B}$ is compact, then

- 1. $\operatorname{ext}_{\beta}(\overline{\operatorname{co}_{\beta}B}) \subset \operatorname{ext}_{\beta}\overline{B} \cup \{\theta\};$
- 2. $\operatorname{ext}_{\beta}(\overline{\operatorname{aco}_{\beta}B})\subset \bigcup_{|\lambda|=1}\lambda\operatorname{ext}_{\beta}\overline{B}$.

3. The equivalence of the UF-boundedness and the UB-boundedness in conjugate cones

When X is a locally β -convex space, by the corollary of the second separation theorem we know that its conjugate cone X_{β}^{*} is big enough. In this case, the locally β -convex topology and the conjugate cone X_{β}^{*} of X are determined by each other. In this section,

we are going to discuss the equivalence problem about two kinds of boundedness under the following two uniformly convergent topologies of X_{β}^* , i.e. the problem about when the uniform boundedness principle holds in the topological cone X_{β}^* .

Definition 3.1 Let E be a convex cone with neutral element θ . E is called a topological cone if there is a topology τ such that the addition and the multiplication with nonnegative numbers are continuous in (E,τ) . A set $H \subset (E,\tau)$ is called bounded if H can be absorbed by any θ -neighborhoods, i.e. for every $U \in \mathcal{U}(\theta)$, there is $\lambda_0 > 0$ such that $[0, \lambda_0]H \subset U$.

Let X be a locally β -convex space, let $\mathcal{B} \subset 2^X$ be a family of subsets of X directed under set-theoretic relation \subset . Then X_{β}^* can be endowed with such a topology that the convergence is equivalent to the uniform convergence on every member of \mathcal{B} . This space is denoted by $(X_{\beta}^*, \mathcal{B})$. By the definition it is not difficult to verify the following lemmas:

Lemma 3.1 Under above conceptions we have

- 1. If for each $f \in X_{\beta}^*$ and $B \in \mathcal{B}$, f(B) is a bounded subset of R^+ , then $(X_{\beta}^*, \mathcal{B})$ is a topological cone.
- 2. If \mathcal{B} still satisfies the stretching property: $\forall B \in \mathcal{B}$ and r > 0 we have $rB \in \mathcal{B}$, then $\{B^0 : B \in \mathcal{B}\}$ constitues a θ -neighborhood basis of $(X_{\mathcal{B}}^*, \mathcal{B})$. Where

$$B^0 = \{ f \in X_B^* : f(x) \le 1, x \in B \}$$

is the polar set of B.

Let \mathcal{B}_f and \mathcal{B}_b denotes the family of all finite subsets and all bounded subsets of X respectively. Then \mathcal{B}_f and \mathcal{B}_b satisfy the conditions of lemma 3.1, hence $(X_\beta^*, \mathcal{B}_f)$ and $(X_\beta^*, \mathcal{B}_b)$ turn into two topological cones. We call the conical topology of $(X_\beta^*, \mathcal{B}_f)$ the UF-topology and the conical topology of $(X_\beta^*, \mathcal{B}_b)$ the UB-topology. Because $\mathcal{B}_f \subset \mathcal{B}_b$, the UF-topology is weaker than the UB-topology, and hence any UB-bounded subset of X_β^* (under the UB-topology) is certainly UF-bounded. Now we discuss the problem of when the UF-bounded subsets of X_β^* are also UB-bounded, i.e., the problem of when the uniform boundedness principle holds in topological cone X_β^* .

From the definitions it is easy to show the following lemmas.

Lemma 3.2 Let $B \subset X, H \subset X_{\beta}^*$. Then B^0 absorbs H if and only if H^0 absorbs B. Where

$$H^0 = \{ x \in X : f(x) \le 1, f \in H \}$$

is the polar set of H.

Lemma 3.3 Let \mathcal{B} be a directed family of subsets of a locally β -convex space X. If \mathcal{B} have the streching property such that $(X_{\beta}^*, \mathcal{B})$ constitues a topological cone, then a set H is bounded in $(X_{\beta}^*, \mathcal{B})$ if and only if for every $B \in \mathcal{B}$, H^0 absorbs B.

Theorem 3.1 Let X be a locally β -convex space. If X is a β -barreled space (i.e., every β -barrel is a θ -neighborhood) or a Bair space, then the UF-boundedness and the UB-boundedness are equivalent in X_{β}^* .

Proof We need merely to show that a UF-bounded set H is UB-bounded as well. From the continuity of the members of H, H^0 is a closed β -convex subset of X. By the UF-boundedness of H, we know from lemma 3.3 that H^0 has absorbing property. Thus $K = H^0 \cap (-H^0)$ is a β -barrel. If X is β -barreled, then K is naturally a θ -neighborhood. If X is a Bair space then from the absorbing property of K we have $X = \bigcup_{n=1}^{\infty} nK$. By the fact that K is closed and a Bair space is of itself second category there is $n_0 \in N$ such that $\inf(n_0K) \neq \Phi$, and hence $\inf K \neq \Phi$. Since K is circled, we have $\theta \in \inf K$, i.e., K is also a θ -neighborhood. For every bounded set $B \in \mathcal{B}_b$, B is absorbed by $K \subset H^0$. By lemma 3.2 we know that H is absorbed by B^0 . Because $\{B^0 : B \in \mathcal{B}_b\}$ is a θ -neighborhood basis of $(X_{\theta}^*, \mathcal{B}_b)$, H is bounded in $(X_{\theta}^*, \mathcal{B}_f)$. \square

Now we introduce the conception of subcomplete for a locally β -conves space X, and show that the subcompleteness is a necessary and sufficient condition for the equivalence of the UF-boundedness and the UB-boundedness in its conjugate cone X_A^* .

Definition 3.2 Let X be a locally β -convex space, A an absolutely β -convex subset of X and $X_A = \lim_{A \to \infty} A$ is called a β -disc if (X_A, P_{A_B}) is a complete β -normed space. Where

$$P_{A_{\beta}}(\boldsymbol{x}) := \inf\{t > 0 : \boldsymbol{x} \in t^{\beta}A\}, \boldsymbol{x} \in X_{A}$$

is the β -Minkowski functional generated by A. A locally β -convex space X is called sub-complete if each bounded subset of X is contained in some bounded β -disc.

Lemma 3.4^[5] Let T and T' be two vector topologies for a vector space X with T' being F-linked to T (i.e., there is a θ -neighborhood basis of (X,T') consisting of closed subsets of (X,T)). Then for each Cauchy net $\{x_{\alpha}\}$ in (X,T') we have $x_{\alpha} \xrightarrow{T'} x_0$ whenever $x_{\alpha} \xrightarrow{T} x_0$.

Theorem 3.2 Let X be a locally β -convex space. If X is subcomplete, then the UF-boundedness and the UB-boundedness are equivalent in X_{β}^* .

Proof Let $H \subset X_{\beta}^*$ be UF-bounded. For every $B \in \mathcal{B}_b$, by the subcompleteness of X there is a bounded β -disc $A \subset X$ such that $B \subset A$. By the boundedness of A we know that the topology of X_A generated by the β -norm $P_{A_{\beta}}$ is stronger than the induced topology $\tau|X_A$, where τ is the original vector topology of X. Let $H_{X_A} = \{f|_{X_A}: f \in H\}$ be the restriction of H on X_A , then from $H_{X_A} \subset (X_A, \tau|X_A)_{\beta}^*$ we obtain $H_{X_A} \subset (X_A, P_{X_A})_{\beta}^*$. Because H is UF-bounded in X_{β}^* we know that H_{X_A} is UF-bounded in $(X_A, \tau|X_A)_{\beta}^*$, then it is UF-bounded in $(X_A, P_{X_A})_{\beta}^*$. From the completeness we know that $(X_A, P_{X_A})_{\beta}^*$ as well. Since $B(\subset A)$ is bounded in (X_A, P_{X_A}) , B^0 absorbs H_{X_A} in $(X_A, P_{X_A})_{\beta}^*$, hence B^0 absorbs H in X_{β}^* . Thus H is UB-bounded in X_{β}^* . \square

Theorem 3.3 Let X be a locally β -convex Hausdorff space such that its every finite codimensional subspace has completenentary subspace. Then the UF-boundedness is equivalent to the UB-boundedness in X^*_{β} if and only if X is subcomplete.

Proof By theorem 3.2 it is sufficient to show the necessity. Assume to the contrary,

that X is not subcomplete. Since the closed absolutely β -convex hull of any bounded subset in a locally β -convex space is also bounded, there exists a bounded closed absolutely β -convex subset A of X such that (X_A, P_{A_β}) is not complete. Let $\{x_n\}_1^\infty$ be a Cauchy sequence in (X_A, P_{A_β}) that is not convergent. It is clear that $\{x_n\}_1^\infty$ is bounded in (X_A, P_{A_β}) , and hence in X. Without loss of generality we may assume $\{x_n\}_1^\infty \subset A$. Let τ is the original topology of X, then the β -norm topology of (X_A, P_{A_β}) is F-linked to the induced topology $\tau|X_A$. By lemma 3.4, $\{x_n\}_1^\infty$ is not convergent in $(X_A, \tau|X_A)$ and hence in X. Thus $\{x_n\}_1^\infty$ can not be contained in any finite dimensional subspace of X. Assume without loss of generality that $P = \{x_n\}_1^\infty$ is linearly independent. Let Q be another linearly independent subset such that $P \cup Q$ constitues a Hamel basis of X. Since X is separated and every finite codimensional subspace of it has complete tentary subspace, for each $n \in N$,

$$X_n = \lim[(P \bigcup Q) \setminus \{x_n\}]$$

is a closed subspace of X and $x_n \notin X_n$. Since $\{x_n\}$ is a compact singleton and X_n is a closed β -convex set and $x_n \notin X_n$, by the proof process of the second separation theorem we know that there is an open β -convex θ -neiborhood U of X such that

$$(X_n + U) \bigcap (\{x_n\} + U) = \Phi. \tag{6}$$

Let $f_n = P_{(X_n + U)_\beta}$, then from $\theta \in int(X_n + U)$ and lemma 2.1 we have $f_n \in X_\beta^*$. By the definition and (6) we have

$$f_n(x) = 0, \forall x \in X_n; f_n(x_n) > 0, \forall n \in \mathbb{N}.$$
(7)

Let $g_n(x) = \frac{1}{f_n(x_n)} f_n(x)$, then $g_n \in X_{\beta}^*$ and

$$g_n(x) = 0, \forall x \in X_n; g_n(x_n) = 1, \forall n \in N.$$
(8)

Let $H = \{ng_n\}_1^{\infty} \subset X_{\beta}^*$. Then for every element

$$x = \sum_{i=1}^m \xi_i x_i + y \in X, y \in \text{lin}Q,$$

when n > m we have $x \in X_n$, $g_n(x) = 0$. So for every finite subset B of X, there exists $M < +\infty$ such that

$$\sup_{x \in B} \sup_{n \in N} \{ ng_n(x) \} < M. \tag{9}$$

Thus $\frac{1}{M}H \subset B^0$, i.e., H is UF-bounded in X_{β}^* . But for the bounded subset $P = \{x_n\}_1^{\infty}$ of X we have

$$\sup_{x \in P} \sup_{n \in N} \{ ng_n(x) \} = +\infty. \tag{10}$$

This is to say that H can be absorbed by P^0 , and H is not UB-bounded in X_{β}^* . This is contrary to the fact that the UF-boundedness is equivalent to the UB-boundedness in X_{β}^* . \square

Acknowledgment The authors are grateful to Prof. Ding Guanggui of Nankai University

for his help and guidance.

References:

- [1] DING Guang-gui. The Selected Topics to Topological Linear Spaces [M]. Nanning: Guangxi Education Press, 1987.
- [2] WANG Jian-yong. The decomposition theorem of interior and boundary and the first separation theorem of β -convex sets [J]. Journal of Ningxia University, 1991, 12(4): 12-19.
- [3] LI Bao-xiu. Definition of arcwise quasiconvex function and property [J]. Journal of Lanzhou University, 1989, 25(1): 17-22.
- [4] RICHARD B. H. Geometric Funtional Analysis and Its Applications [M]. New York: Springer-Verlag, 1975.
- [5] ALBERT W. Mordern Methods in Topological Vector Spaces [M]. New York: McGraw-Hill Inc., 1978.
- [6] HANS J. Locally Convex Spaces [M]. Stuttgart: B G Teubner, 1981.
- [7] BENNO F, WOLFGANG L. Convex Cones [M]. Amsterdam: North-Holland Publishing Company, 1981.
- [8] PREM P, MURAT R S. Topological Semi-vector spaces: convexity and fixed point theory [J]. Semigroup Forum, 1974, 9: 117-138.
- [9] ARNE B. An Introduction to Convex Polytopes [M]. New York: Springer-Verlag, 1983.
- [10] HELMUT H S. Topological Vector Spaces [M]. New York: Springer-Verlag, 1971.

局部 β- 凸空间中的第二分离性定理 及其共轭锥上的有界性定理

王见勇1,马玉梅2

(1. 常熟高等专科学校数学系, 江苏 常熟 215500; 2. 大连大学数学系, 辽宁 大连 116622)

情 要: 第一部分给出局部 β- 凸空间中的第二分离性定理和 Minkowski 定理及 Krein-Milman 定理等; 第二部分得到其共轭锥上 UF- 有界与 UB- 有界等价的充要条件为原空间是次完备的.