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Abstract: This paper deals with the locally 3-convex analysis that generalizes the lo-
cally convex analysis. The second separation theorewm in locally f-convex spaces, the
Minkowski theorem and the Krein-Milman theorem in the S-convex analysis are given.
Moreover, it is obtained that the U F-boundedness and the U B-boundedness in its con-
jugate cone are equivalent if and ouly if X is subcomplete.
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1. Introduction

Let 0 < B <1 be a fixed number, let X be a vector space and A a subset of X. A is
called B-convex if for every z,y € A we have [z,y]3 C A. Where

[z, 0lp = {Ae + py : A, p > 0,0 4+ pf =1}

(:C,y)/«; = [i,y]ﬂ\{l,y}.

In this paper we use cogA and acogA to denote the 3-convex hull and the absolutely
B-convex hull of A respectively, # the neutral element of spaces.

Definition 1.1 Let B C A be two subsets of a vector space X. If for every z,y € A,
whenever (z,y)3(1B # ® we have z,y € B, then B is called a f-extremal subset of A.
z¢ is called a B-extreme point of A if the singleton {2} is a B-extremal subset of it. The
set of all B-extreme points of A is called the 3-extreme points set of A, and is denoted by
extgA.
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Let A be a B-convex set, a real-valued functional f defined on A is called $-convex if

for every z,y € A we have
FQz + py) < Mf(e)+ 1 f(y), \p > 0,0 +4F =1,

The set of all such functionals is denoted by convg(A).

A nonnegative, subadditive and 3-positively homogeneous (respectively, 8-absolutely
homogeneous) functional f defined on a vector space X is called a 3-subseminorm, snd
we use X é to denote the family of all such functionals. (respectively, called 3-seminorm,
and use X;ﬁ to denote the family of all such functionals.) When X is a topological vector
space, we use X and X, to denote the family of all continuous g-subseminorms and the
family of all continuous (-seminorms respectively. The relation

X;ﬂ C X;; C convg(X)
is clear. If f € convg(X)(f € X;ﬂ), then for every a € R, the set
B(f.a)i={z€ X : f(z) < a}

is B-convex (respectively, absolutely 3-convex.)
When A is a star absorbing subset of a vector space X, we call the nonnegative-valued
functional .
Py (z):=inf{t >0:zctrPA},ze X

the S-Minkowski functional generated by A.

Definition 1.2 Let 0 < 8 < 1, a topological vector space X is called locally 3-convex if
there exists a #-neighborhood basis of 3-convex sets.

This paper deals with the locally 3-convex analysis that makes the locally convex
analysis its special case. The f-convexity is far more extensive than the linear convexity
(the general convexity). When 0 < § < 1, every nonempty (-convex set is restrained by
8 (has 6 as one of its limit point), so they have no translation invariant property(?. [2]
studied some algebraic problems in the 3-convex analysis, and obtained the first separation
theorem. (1] and [6] obtained some fundamental properties about locally SB-convex spaces
and B-convex functionals, etc.. Until now, however, the theory and the applications of
the locally (-convex analysis is far poorer than that of the locally convex analysis. The
second separation theorem in locally B-convex spaces X, the Minkowski theorem and
the Krein-Milman theorem in the 3-convex analysis deduced from the second separation
theorem are obtained, and a necessary and sufficient condition for the equivalence of the
U F-boundedness and the U B-boundedness in its conjugate cone Xj is obtained.

2. The second separation theorem in -convex spaces and the Minkowski
theorem

The following lemmas are the basic facts in the 8-convex analysis. Because they are
not difficult to verity, we delete their proof.

Lermuna 2.1 Let 0 < 8 < 1,and let A be a star absorbing set. Then
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1. Py,(z) is B-positively homogeneous;
2. when A is 3-convex , we have Py, € X;,;

3. when A is absolutely -convex , we have Py, € X;ﬁ.
Lemma 2.2 Let 0 < 8 <1, and let X be a topological vector space. Then

1. when A is a star absorbing 3-convex subset of X, we have

intA C{z € X :Pa,(z) <1} CAC{x € X :Py,(z) <1} C A4

2 let f € Xlli, then f € X} if and only if there is some a > 0 such that intB(f,a) # &.
Lemma 2.3 Let 0 < < 1.

1. For each locally 3—convex space, there is a 8-neighborhood basis cosisting of (open)
B—barrels (absorbing, closed (respectively,open) and absolutely 3-convex set).

2. A topological vector space X is locally B-convex if and only if there is a family of
continuous B-(sub)seminorms {fo € X};: & € I} such that U(6) = {B(fa,1): € I}
constitues a @-neighborhood basis of X .

3. A locally B-convex space X is separated if and only if for every  # 0, there is some
f € X4 such that f(z) > 0.

Theorem 2.1 ( The second separation theorem ) Let 0 < 8 < 1, let X be a locally
B-convex space. Let A be a nonempty closed 3-convex subset of X and B a nonempty
closed subset of X with ANB =& (for § =1, still assume ® € A ). Thenif Aor B is
compact, they can be strongly separated by some continuous [3-subseminorm, i.e. there
is f € Xj such that max{f(z): z € A} <1 < inf{f(z) : = € B}, if A is compact, and
sup{f(z) : z € A} <1 < min{f(z): =z € B}, if B is compact.

Proof Let U(f) = {Uy : @ € I} be a §—neighborhood basis of X consisting of open
absolutely S—convex sets. Since A or B is compact, we assert that there is U,, € U(8)
such that (A + U, )\ B = &, which is equivalent to (B + Uy, ) (A = & as Uy, is circled.
Assume to the contrary, that the assertion is wrong, without loss of generality we may
assume that A is compact. Then for every a € I, there exist z, € A,y € B and 2z, € U,
such that y, = z4 + zo. It is obvious that 2/(8) is directed under the set-theoretic relation
D, i.e. for each pair Uy, ,Us, € U(B), there is Uy, € U(B) such that Uy, NUqs, D Uag,.
Now it is obvious that {z«},{¥.} and {2,} turn into three nets and z, — 6. From the
compactness of A, there is some convergent subnet of {z,} .Without loss of generality we
may assume that z, — 2o, then yo = £4 + zo — 2o. Then we have 2o € A() B because
A and B are closed. This is contrary to A()B = ®. The contradiction means that the
assertion holds.

Now let U,, € U(8) be such that (A + Uy, )V B = @, and let Uy, € U(F) such that
Us, + Uay, CUqy. By (A+ Uy, +Uq, )N B = @ and the fact that Uy, is circled, we have

(A+ U, )(V(B+Us) =2 (1)
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and then

(A+Uq))B =2 (2)
Since A + Uy, is an open §-convex #-neighborhood, by lemma 2.1 and lemm2.2 we have
f = Pasv,,), € X5 From (2) we have

f(z) < f(y),¥(z,y) € AX B. (3)
When A is compact, assume that f takes its maximum at z¢, then
max{f(z) : z € A} = f(20) <1 < mf{f(2) : 2 € BY; (4)
When B is compact, we can similarly obtain
sup{f(z):z € A} <1 < min{f(z): z € B}. (5)
This completes the proof. O

Corollary Let X be a locally 8-convex Hausdorff space, 2,y € X and z # y. Then there
is f € X} such that f(z) # f(y), i.e., Xj separates X.

Proof Since z # y, we have y ¢ [0,z] or z ¢ [0,y]. Without loss of generality we may
assume that y ¢ [#,z]. For X is separated, [0,z] and {y} satisfies the condition of theorem
2.1, hence there is f € X such that f(z) # f(y). O

For a nonempty locally convex topological vector space X, it is well-known that its
conjugate space X ™ is big enough. When X is non-locally convex, it is possible that X*
consists of only one element ,i.e. X* = {6}. But if the space X is locally S—convex, X3
constains a great number of non-zero elements. For example, the space LP[0,1](0 < 8 < 1)
is just such a space. When X is locally 3-convex space, it is clear that X3 is a positive
cone, called the conjugate cone of X. In this case, the locally §-convex topology and the
conjugate cone X3 of X are determined by each other. As the applications of the second
separation theorem, we now show the Minkowski theorem and the Krein-Milman theorem
in locally 8—convex spaces.

Theorem 2.2 Let 0 < 3 < 1, let X be a locally §-convex Hausdorff space and A a
nonempty compact subset of X. Then extgA # ®.

Proof Let A be the family of all compact S—extremal subset of A, then A € A. Under the
set-theoretic relation D, A is a semi-order set (i.e. for By, B2 € A ,B, < B, <= B; D B,)
and for each total ordering subset B of A, N{B : B € B} € B is its upper bound. Then
by the Zorn lemma there is a maximal element C € A . By the second separation theorem
we can show that C is a singleton, so & # C C extgA. O

Lemma 2.4 Let 0 < 3 <1 and By, B,,---,B,, be a finite family of compact 3-convex
n
subsets of a topological vector space X. Then cog( U B;) is compact and B-convex as

=1
well.
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In fact, this can be seen from the compactness of By X --- X B,, x A and the continuity
of f:Byx---XxB,xA— X:

f@1, 2n, (A5 A0)) = Y iz
1=1

Where A = {(A,A2,---,An) € R™: \; > 0, i /\? = 1} is compact in R".
=1

Theorem 2.3 Let0 < 8 < 1, let X be alocally 3-convex Hausdorff space and B a subset
of X such that cogB is compact. Then

extg(cosB) C B| J{6}.

Proof When 8 = 1, from [4] we have ext(coB) C B, we need only to show the conclusion
for 0 < B < 1. As m = co;;f, there is no harm in assuming that B is closed, hence it
is compact, too. By theorem 2.2 we have extg(cogB) # ®. Let 8 # z € extg(copB), it is
sufficient to show z¢ € B.

Let U(6) be a f-neighborhood basis of X consisting of 3-barrels. For every U € U(#),
by the compactness of B there exists a finite family z,,z,---,z, € B such that B C
n

U(z: + U). Let

=1

B; = cog[([8, z:] + U)ﬂB],(i =1,2,---,n).
From B; C cogB we know that B; are compact and S-convex. Then co[;(C) B;) is also
=1

n
compact and (-convex by lemma 2.4. From B C |J B; we have
i=1

n

m C COﬁ(U B,‘) = COﬂ(U B,').

=1 i=1
Then . .
Ty = Zx\;y,‘,y,’ € B;, A\ > O’Z’\iﬁ =1.
=1 i=1
From 6 # z € extg(cogB) there is 1 < i3 < n such that A;; = 1, and for the other j # g
we have A\; = 0. Let 2o = y;0 € B;, C [0,z;,] + U (notice that the right is closed and
B-convex ). From the arbitrary property of U we have z; € [0,1)B = [0,1)B. Because

6 # zo € extg(cogB) we have zy € B, this completes the proof. O
It is not difficult to show the following lemmas:

Lemma 2.5 Let 0 < 8 <1, let B be a nonempty subset of a topological vector X. Then
for every continuous 3-convex functional f defined on X we have

sup{f(z) : z € B} = sup{f(2) : 2 € copB}.
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Lemma 2.6 Let 0 < 3 < 1, let X be a locally 3-convex space and A a nonempty compact
B-convex subset of X. Let f € convg(X) be an upper semicontinous functional. Then the
B-convex programming problem max{f(z) : 2 € A} has solution in extgA.

The following theorem is a generalization of the Minkowski theorem of locally convex
analysis, see [4] and [9], etc..

Theorem 2.4 (Minkowski theorem) Let 0 < 8 < 1, let X be a locally 3-convex Hausdorff
space and A a nonempty compact §-convex subset of X. Then for each B C A, the
following conditions are equivalent:

1. cogB = A;
2. sup{f(z):z € B} = max{f(z):z € A},Vf € X;
3. extgA C BJ{6}.

Proof From lemma 2.5 we know that (1) implies (2).
When z¢ € A\cogB, {20} is closed and cogB is a compact 3-convex set. By the second
separation theorem there is f € X3 such that

sup{f(z) : z € B} = max{f(z):z € cogB} < 1 < f(zo) < max{f(z):z € A}.

This shows that (2) implies (1).

When extgA C BJ{8}, for every f € X3, by lemma 2.6 there is 2o € extgA C BU{6}
such that f(zo) = sup{f(z): z € A}. As f(6) = 0, no matter zo = 6 or zo € B, we have
max{f(z) : z € A} = f(z0) < sup{f(z) : 2 € B},

i.e., (3) implies (2). The fact that (1) implies (3) can be got from theorem 2.3. O

Corollary 1 (Krein-Milman theorem(ﬁl) Let 0 < 8 <1, let X be a locally 3-convex
Hausdorff space and A a nonempty compact f3-convex subset of X, then A = cog(extgA).

Corollary 2 Let 0 < 8 < 1, let X be a locally 3-convex Hausdorff space and B a
nonempty subset of X such that acogB is compact, then

1. extg(cogB) C extgB U{8};
2. extg(acogB) C |J dextgB.

JAl=1

3. The equivalence of the UF-boundedness and the U B-boundedness in
conjugate cones

When X is a locally 8-convex space, by the corollary of the second separation theorem
we know that its conjugate cone X is big enough. In this case, the locally 5-convex
topology and the conjugate cone Xj of X are determined by each other. In this section,
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we are going to discuss the equivalence problem about two kinds of boundedness under
the following two uniformly convergent topologies of X, i.e. the problem about when the
uniform boundedness principle holds in the topological cone X B

Definition 3.1 Let E be a convex cone with neutral element 8. E is called a topological
cone if there is a topology T such that the addition and the multiplication with nonnegative
numbers are continuous in (E,T). A set H C (E,7) is called bounded if H can be absorbed
by any 8-neighborhoods, i.e. for every U € U(8), there is Ao > 0 such that [0, \]H C U.
Let X be a locally B-convex space, let B C 2X be a family of subsets of X directed
under set-theoretic relation C. Then X can be endowed with such a topology that the
convergence is equivalent to the uniform convergence on every member of B. This space
is denoted by (Xj,B). By the definition it is not difficult to verify the following lemmas:

Lemma 3.1 Under above conceptions we have

1. If for each f € X; and B € B, f(B) is a bounded subset of R*, then (Xj, B) is a
topological cone.

2. If B still satisfies the stretching property: VB € B and r > 0 we have rB € B , then
{B°: B € B} constitues a §—neighborhood basis of (X}, B). Where

B={feX;: f(z) <1,z € B}
is the polar set of B.

Let By and By, denotes the family of all finite subsets and all bounded subsets of X
respectively. Then By and B, satisfy the conditions of lemma 3.1, hence (X3,Bf) and
(Xj, Bp) turn into two topological cones. We call the conical topology of (X3, By) the
U F-topology and the conical topology of (Xj, By) the U B~topology. Because By C By ,
the U F-topology is weaker than the U B-topology, and hence any U B-bounded subset of
X; (under the U B-topology) is certainly U F-bounded. Now we discuss the problem of
when the U F-bounded subsets of X are also U B-bounded, i.e., the problem of when the
uniform boundedness principle holds in topological cone Xj.

From the definitions it is easy to show the following lemmas.

Lemma 3.2 Let B C X,H C Xj;. Then BY absorbs H if and only if H® absorbs B.
Where
H°={ze€ X: f(z)<1,f€ H}

is the polar set of H.

Lemma 3.3 Let B be a directed family of subsets of a locally 3-convex space X. If B
have the streching property such that (X3, B) constitues a topological cone, then a set H
is bounded in (X, B) if and only if for every B € B, H° absorbs B.

Theorem 3.1 Let X be a locally 3-convex space. If X is a 3-barreled space (i.e., every
B-barrel is a §-neighborhood ) or a Bair space, then the U F-boundedness and the U B-
boundedness are equivalent in Xj.
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Proof We need merely to show that a UF-bounded set H is UB-—bounded as well.
From the continuity of the members of H, H is a closed 3-convex subset of X. By the
U F-boundedness of H, we know from lemma 3.3 that H® has absorbing property. Thus
K = H°N(—H") is a B-barrel. If X is B-barreled, then K is naturally a #-neighborhood.

If X is a Bair space then from the absorbing property of K we have X = |J nK. By the

fact that K is closed and a Bair space is of itself second category there is ng 61 N such that
int(noK') # ¢, and hence intK # ®. Since K is circled, we have 8 € intK, i.e., K is also
a #-neighborhood. For every bounded set B € By, , B is absorbed by K C H°. By lemma
3.2 we know that H is absorbed by BY. Because {B°: B € By} is a f-neighborhood basis
of (X, Bp) , H is bounded in (X3, By) . O

Now we introduce the conception of subcomplete for a locally 8-conves space X, and
show that the subcompleteness is a necessary and sufficient condition for the equivalence
of the U F-boundedness and the U B-boundedness in its conjugate cone Xj.

Definition 3.2 Let X be a locally B-convex space, A an absolutely 3-convex subset of
X and X4 = linA. A is called a B-disc if (X 4, Pa,) is a complete -normed space. Where

Pa,(z):=inf{t >0:z ¢ tPA},z € Xy

is the 3-Minkowski functional generated by A. A locally 3-convex space X is called sub-
complete if each bounded subset of X is contained in some bounded (-disc.

Lemma 3.45% Let T and T’ be two vector topologies for a vector space X with T' being
F-linked to T (i.e., there is a 8-neighborhood basis of (X,T") consisting of closed subsets

of (X,T) ). Then for each Cauchy net {z,} in (X,T’) we have z, T, 2o whenever
T

ToH — Tp.

Theorem 3.2 Let X be a locally 3-convex space. If X is subcomplete, then the UF-
boundedness and the U B-boundedness are equivalent in Xg.

Proof Let H C X; be UF-bounded. For every B € By, by the subcompleteness of X
there is a bounded 3-disc A C X such that B C A. By the boundedness of A we know that
the topology of X, generated by the §-norm P, is stronger than the induced topology
7|X 4, where 7 is the original vector topology of X. Let Hx, = {f|x, : f € H} be the
restriction of H on X4, then from Hx, C (XA,TIXA)’;, we obtain Hx, C (Xa, Px,)p
Because H is U F-bounded in X; we know that Hx, is U F-bounded in (Xa, 7'|XA);;, then
it is U F-bounded in (X4, Px, )Z, . From the completeness we know that (X4, Px,) is a
Bair space. By theorem 3.1 we obtain that Hx, is UB-bounded in (X4, Px,)p as well.
Since B(C A)is bounded in (X4, Px,), BY absorbs Hx, in (X4, Px, )5, hence BP? absorbs
H in Xj. Thus H is U B-bounded in X5. O

Theorem 3.3 Let X be a locally 3-convex Hausdorff space such that its every finite codi-
mensional subspace has completmentary subspace. Then the U F-boundedness is equiva-
lent to the U B-boundedness in Xj if and only if X is subcomplete.

Proof By theorem 3.2 it is sufficient to show the necessity. Assume to the contrary,



that X is not subcomplete. Since the closed absolutely 3-convex hull of any bounded
subset in a locally B-convex space is also bounded, there exists a bounded closed abso-
lutely 3-convex subset A of X such that (X4,P4,) is not complete. Let {z,}{° be a
Cauchy sequence in (X4, Ps,) that is not convergent. It is clear that {z,}7° is bounded
in (X4, Pa,), and hence in X. Without loss of generality we may assume {z,}° C A.
Let 7 is the original topology of X, then the S-norm topology of (X4, Pa,) is F-linked
to the induced topology 7|X4. By lemma 3.4, {z,}° is not convergent in (X4, 7|X4)
and hence in X. Thus {z,};° can not be contained in any finite dimensional subspace
of X. Assume without loss of generality that P = {z,}7° is linearly independent. Let Q
be another linearly independent subset such that P{JQ constitues a Hamel basis of X.
Since X is separated and every finite codimensional subspace of it has completmentary
subspace, for each n € N,

Xu = lin[(P|JQ)\{zn}]

is a closed subspace of X and z,, ¢ X,,. Since {z,} is a compact singleton and X, is a
closed S—convex set and z,, € X,,, by the proof process of the second separation theorem
we know that there is an open f-convex -neiborhood U of X such that

(Xn+ U){za} +U) = @. (6)

Let f. = Px,+U),, then from § € int(X, + U) and lemma 2.1 we have f,, € X;. By the
definition and (6) we have

fu(z) = 0,Vz € X, fu(zn) > 0,Vn € N. (7)
Let ga(z) = fT(lmfn(z), then g,, € XE, and
gn(z) = 0,Vz € X, 90(zn) = 1,Vn € N. (8)

Let H = {ng,,}7* C Xj. Then for every element

r = Z{,-z,--l-y € X,yE linQ,

1=1
when n > m we have z € X,,, g.(z) = 0. So for every finite subset B of X, there exists

M < 4oc such that

sup sup{ng,(z)} < M. (9)
zeB neN

Thus %ff C BY i.e., H is UF-bounded in Xj;. But for the bounded subset P = {z.}5°
of X we have

sup sup{ng,(z)} = +oo. (10)
zePneN

This is to say that H can be absorbed by P’, and H is not U B-bounded in X5 This
is contrary to the fact that the U F-boundedness is equivalent to the U B-boundedness in
X, O

B
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