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Abstract: A near-triangulation is such a connected planar graph whose inner faces are
all triangles but the outer face may be not. Let G be a near-triangulation of order n and
C be an SCDC (small circuit double cover)[2] of G. Let

8(Co) = min{rr;gg{l(c,—)} - n_leixcl'{l(cj)} | € is an SCDC of G}.

Then, Co is said to be an equilibriuin SCDC of G. In this paper, we show that if G is an
outer planar graph, 8(Cp) < 2, otherwise §(Cq) < 4.
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1. Introduction

All graphs considered here are finite, undirected and simple (without loops or multiple
edges). For a polyhedron ), the graph G(}°) = (V(X), E(X)), where V() and E(})
are the sets of vertices and edges of }_ respectively, is called the underlying graph of 5~ and
2_, an underlain polyhedron of G(}_). For a graph G = (V, E), if there is a polyhedron
> ~m S € S such that G is the underlying graph of ¥, then G is said to be embeddable on
the surface 5. The polyhedron is called an embedding of G. If a graph has an embedding
in the plane, then it is said to be planar. The boundary of a face f is denoted by Jf.
Except the outer face of planar graph G, the other faces are called inner faces. If a vertex
v of G does not belong to the outer face of G, then v is said to be an interior vertex of G.
Let ¢ be a circuit of G. If the length of ¢ is I(¢), then the circuit is said to be an [-circuit.
Similarly, if the degree of a vertex is d, it is called a d-vertex. Terminologies and notations
not explained here can be seen in [1].
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Let C be a collection of circuits of a graph G. If each edge of G belongs to exactly two
members of C, then C is said to be a circuit double cover (CDC) of graph G. For a planar
graph G of order n, if G admits a CDC such that |C| < n — 1, then C is said to be a small
circuit double cover (SCDC)[2] of G.

A triangulation is a simple planar graph in which every face is a triangle. A near-
triangulation is such a connected planar graph whose inner faces are all triangles but the
outer face may be not. If G is a planar graph and G has cut-vertices, we are allowed to
consider the blocks of G for CDC or SCDC. So all near-triangulations considered here are
2-connected. Clearly, a triangulation is also a near-triangulation. If G is a planar graph
and it has no interior vertex, it is called an outer planar graph.

Let G = (V,E) be a graph. A minor® is a graph obtained from G by successively
deleting and/or contracting edges of G while any multiple edge that might occur is replaced
by a single edge and a loop by its end. A generator is a graph obtained from G by
successively deleting vertices with their incident edges. Clearly, for a graph, its generator
is also a minor.

Let G = (V, E) be a 2-connected near-triangulation of order n and f be the outer face
of G. If G is an outer planar graph and G contains a triangle T in which Ve € E(T),
e ¢ E(3f), then T is said to be an interior triangle of G. Let G = (V, E) be a near-
triangulation with at least one interior vertex u and [V(G)| = n. Then, G[uU N(u)] is a
wheel. In fact, if G has only one interior vertex, then G is a wheel by itself. Otherwise
there is at least one vertex v which is not adjacent to u by the planarity of G.

Let vy be a vertex such that

d(u, vo) = max{d(u, v) | d(u, v) > 2,v € 9f},

where d(u, v) is the distance between u and v. Then, we delete the vertex vy with its
incident edges. Repeating the procedure, a wheel can be recursively obtained. Conversely,
any near-triangulation can be obtained by successively adding a new vertex to the outer
face with its incident edges. So G[ulJ N(u)] is said to be a wheel generator of G, denoted
by WH.

In previous papers(4, 5], we sketched the proofs of the following results.

Theorem 1.114 Every near-triangulation admits an SCDC.

Theorem 1.21°! Let G be an outer planar graph of order n and C is an SCDC of G. If

G is a near-triangulation, then |[C| < n — 2 if and only if G contains an interior triangle.
We know that simple planar graphs on n vertices may have as many as 3n — 6 edges.

Suppose G admits an SCDC C. Since every edge of G is contained in precisely two circuits

of C, we have "™, I(c;) < 6n — 12, where m = |C| and ¢; € C. Suppose I(c;) is the average

length of circuits of C, then we have I(c) -m < I(c)-(n — 1) < 6n — 12 and

6

I(c)< 6 - .
() n—-1

But what is the length of the longest circuit in C ? It seems that the problem has not
been treated in literatures. Here we consider the compactness of an SCDC C of G. Let

§(Cy) = rmn{l;rllgé({l(cj)} - g}ércl{l(cj)} | C is an SCDC of G}.
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Then, C is said to be an equilibrium small circuit double cover. For a near-triangulation
G of order n, if G is an outer planar graph, we will prove that §(Cy) = 2; if G has at least
one interior vertex, then §(Cy) < 4.

2. Main results

Before obtaining the main results of the section, we provide some useful definitions
and lemmas.

Let G be a planar near-triangulation of order n (n > 4) and C be an SCDC of G. Let
f be the outer face of G and 8f = vivy - - vpvy. If there exists circuits ¢, ¢z, -+, ¢x in C,
such that ¢; # ¢; for i # j and v;v;41 € ¢; (4,5 = 1,2, -+, k,vk41 = v1), then C is said to be
a fair small circuit double cover, denoted by FSCDC. The circuit ¢; is called an associated
circuit of v;v;11 of f. The set of all associated circuits is said to be the associated set of f,
denoted by Cy. Let C be an FSCDC of G. From the definition of FSCDC, we know that
for ¢;,c; €C(1 # 4,1, =1,2,--- ,mym < n—-1), |[E(c;) N E(c;) N E(f)| < 2.

If G is an outer planar graph, then it is a Hamiltonian graph, |0f] = n and |C| < n—1.
So G does not admit an FSCDC. If G contains at least one interior vertex, then we have
the following lemma.

Lemma 2.1 Every near-triangulation with at least one interior vertex admits an

FSCDC.

Lemma 2.2 Let G be an outer planar near-triangulation of order n with exactly two
2-vertices. Then, for any SCDC C of G, there are at least two 3-circuits in C and |C| = n—1.

In what follows, let L(C) = max{l(¢;}|Ve; € C} and I(C) = min{l(c;)|Ve; € C}, where C
is an SCDC of graph G.

Lemma 2.3 Let G be an outer planar near-triangulation on n vertices with only two
2-vertices. Then, G admits an SCDC C such that L(C) < 4.

Proof Let f be the outer face of G. Suppose u, v are the two 2-degree vertices, N(u) =
{u1,u2} and N(v) = {v1,v2}. Since G has n— 1 faces and each face’s boundary is a circuit,
let C; be the collection of all the circuits. Then C; is composed of n — 2 3-circuits and 9f.
We denote the collection of the n — 2 3-circuits by Cy = {ci|t = 1,2,---n — 2}. It is easy
to see that each edge of G is contained in precisely two members of C; and |C;| = n ~ 1,
hence, C; is an SCDC of G. As any two adjacent circuits of C, have a common edge, let
¢i' = (0c; D Ocipq1) (i=1,2,---,n—3,¢; € Cy). Let C; = {¢;' | i =1,2,....,n — 3}. Then,
almost every edge of G belongs to two circuits of C; with the exception of the edges uju,,
v1v2, uy; and vv;(z, j = 1,2) which are contained in only one member of C, respectively.
Adding two 3-circuits wu;usu,vv1v2v to Ca, we get the collection C as following

C=0C U{uulugu, VU U0}

Then, C isa CDC of G and |C| = n — 1. It can be seen that L(C) = 4 and I(C) = 3. Hence
the lemma holds. O
Let C be an SCDC of G and f be the outer face of G. For an edge e of df, ¢, and c,

are the two circuits that cover the edge e. Then, the shorter one is said to be the feasible



circuit of e.

Lemma 2.4 Let G be an outer planar near-triangulation of order n (n > 5) with at least
three 2-vertices. Then G admits an SCDC C such that L(C) = 5.

Proof Let f be the outer face of G. Suppose G has k (k > 3) 2-vertices, clearly, the k 2-
vertices belong to 8f because otherwise G would have a multi-edge. We delete one 2-vertex
vg of 0f, along with its incident edges, denoted the resulting graph by G; whose outer
face is denoted by f,. If Gy has exactly two 2-vertices, then we let G* = G; and f* = fj.
Otherwise we delete one 2-vertex v, of df;, along with its incident edges, denoted the
resulting graph by G, whose outer face is denoted by f,. Since G is a near-triangulation
without interior vertex and it contains at least two 2-vertices that only belong to the
boundary of the outer face of G, we can obtain G*, which is a subgraph of G with only two
2-vertices, after repeating the above procedure in finite steps. Without loss of generality,
the deleted 2-vertices are denoted in the order of vg, vy, - -, v;—1 and the resulting graphs
G1,G2,---,G, respectively. Let n* be the order of G*. By the reason argument used
in the proof of Lemma 2.2, G* admits an SCDC C* such that L(C*) = 4, denoted the
collection of 4-circuits of C* by C;. Then |Cy} = n* — 3.

Considering the reverse procedure of obtaining G* from G, we add the deleted m 2-
vertices vpm_1,Vm -2, -,V along with their incident edges to Gp,Gm-1,- -+, G1 to obtain
the original graph G. Then the boundaries of new added triangles are 3-circuits, denoted
by ¢m,em-1,-,c1 respectively and C,, the set of all the 3-circuits. Hence, |C3] = m.
Meanwhile, we modify C* to obtain C as follows. Let e; = d¢;(VE(G;) (i = 1,2,---,m).
Then, we take

Com = (C\{em N0, & ey e},

where ¢}, is the feasible circuit of e,, in C*. It can be checked that C,, is an SCDC of
G Since the length of the feasible circuit is at most 4, L(C,,) = 5 and {(C,,) = 3. Then
we modify C;4 to obtain C; in the same way (i = m — 1,m — 2,---,2/1). At last, let 3
be C. It can be checked that C is an SCDC of G. Notice that the length of the modified
feasible circuit in each procedure of obtaining G is at most 4 and there exists at least one
3-circuits of the SCDC of the resulting graph, L(C) = 5 and {(C) = 3. Hence, the lemma
holds. O

Corallary 2.1 Let G be an outer planar 2-connected near-triangulation of order n with
k (k > 2) 2-vertices. Then, G admits an SCDC C, such that |C| = n — 1 and |C;| = k,
where C; is the collection of 3-circuits in C.

Let G be an outer planar graph on n vertices and C be an SCDC of G. If G is a
near-triangulation, then |E(G)| = 2n — 3. Moreover, }-7, l(¢;) = 4n — 6, where m = |C|
and m<n-—1, ¢ €C. Sowehavel(c)-m <I(c)-(n-1) < 4n — 6 and

i(c)<d— —2

(1)

From Lemma 2.4, we know that G admits an SCDC C, such that 5 is the upbound for
L(C).
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Theorem 2.1 Let G be an outer planar graph of order n and n, be the number of
2-vertices of G. If G is a near-triangulation, then G admits an equilibrium small circuit
double cover Cy, such that

(a) 8(Co)=0,ifn=3;

(b) 6(Co)=1,ifny=2andn>4,0rn; =3 and n=6;

(c) 8(Co)<2,ifny >3 andn>T.

Proof Let f be the outer face of G. Since G is an outer planar near-triangulation, it
contains at least two 2-vertices. If n = 3, i.e., G is a triangle, then L(Co) = I(Co) = 3.
Hence (a) follows.

If G contains only two 2-vertices and G is not a triangle, then |0f| > 4. Let C be
an SCDC of G. By Lemma 2.2, |C| = n — 1 and there are at least two 3-circuits in C.
Therefore, [(C) = 3. For any SCDC C of G, the number of 3-circuits of SCDC C’ obtained
from Lemma 2.3 is the smallest, that is 2, and all other circuits are 4-circuits. Then, from
(1) and the definition of equilibrium small circuit double cover, §(Co) = 1.

If n; = 3 and n = 6, then from Theorem 1.2, G admits an SCDC C such that |C| <
n — 2 = 4. In fact, if |C| < 4, the length of each circuit of C is at least 6 since |E(G)| = 9.
Since |V(G)| = 6, only one 6-circuit can be contained in G, i.e., f. Then, C is not an
SCDC of G. So if |C| < 4, then |C| = 4. Let T, be the interior triangle and T, T> and T3
be the three triangles around T clockwisely. Let

C; = 8T0 A 8T, A 8T,~+1 (‘l = 1,2),

C3 = 8T0 A BTl,
Cq4 = 8T() A 3T3

Let
C={c;|1=1,2,3,4}.

where {(¢;) = 5 (1 = 1,2) and {(c;) = 4 (i = 3,4). It can be seen that each edge of G is
contained in exactly two circuits of C. So G admits an SCDC C such that |C| = 4 and
L(C) = 5, I(C) = 4. Since 2| E(G)| = 18, there is no SCDC of G such that it contains five
circuits having equal length or four circuits with same length. So from the definition of
equilibrium small circuit double cover of G, §(Cy) = 1. These imply (b).

If n; > 3and n > 7, by Lemma 2.4, G admits an SCDC C* such that |C*| < n -1
and L(C*) = 5, I(C*) = 3. By the definition of equilibrium small circuit double cover,
8(Co) < 2.

The proof is completed. O

Lemma 2.5 Every wheel admits an equilibrium small circuit double cover Cy, such that
8(Co) = 0.

Proof Let G be a wheel of order n. Let fy, fa, -, fn_1 be the n — 1 inner faces of G in
clockwise. Take
C={0fi AOfiy1)|i=1,2,---,n—1}
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where the addition in the suffixes is to be modulo n — 1. It is easy to see that C is an
SCDC such that |C| = n — 1 and L(C) = {(C) = 4. Meanwhile, it can be seen that C is
also an FSCDC from Lemma 2.1. Hence, we proved the lemma. O

Lemma 2.6 Let G be a planar near-triangulation of order n with at least one interior
vertex u. Let W* be the wheel generator of G and {V(W™)| > 5. If there is at least one
vertex v such that d(u,v) > 2, then G admits an SCDC C such that L(C) < 7, (C) = 3
except for n = 6 with p(v) = 2, L(C) = I(C) = 5.

Proof In the reverse procedure of obtaining W*, we firstly add a d;-vertex v with its
incident d; edges to W¥. Denote the resulting graph by G;. By Lemma 2.5, W* admits
an SCDC C*, such that |[C*| = |[V(W*¥)| — 1 and L(C*) = I(C*) = 4. For G}, there are two

cases.

Case 1. dy > 2.

Let the neighbors of new added d;-vertex v be vy, v, - - -, v4, in sequence. Since C is also
an FSCDC, corresponding to each edge v;viyy (1 = 1,2,--,dy — 1) of W*, the associated
circuit of C* are denoted by ¢y, ¢z, - -, ¢4, -1, which contain the edge uv; (i = 1,2,---,d; 1)

respectively. We modify C* to obtain the collection Cy of G, as follows: we replace the
segment v v, of ¢; by the path v,vv, and denote the resulting circuit by cl. Then, we
replace the segment v;v;4; of ¢; by the path v;v;_,vv;4, and denote the resulting circuits
by ¢}(i = 2,3,---,d; — 1). Finally, we add a 3-circuit vg4, vg, 194, to C*, denoted by cq, .

Then, we get C;
C,=(C"\{ali=1,2,--,dy — 1})U{c,1|‘l =1,2,---,dy — I}U{cdl}'

It is easy to see that the length of the longest circuit of C; is 6, I(c}) = 5, I(c4,) = 3 and
the length of other circuits of C; is 4.

Case 2. d, = 2.

We follow the notations of Case 1 and let N(v) = {v;,v;}. Corresponding to the edge
vivy of W*, the associated circuit of C* is ¢;. We modify C* to obtain the collection C,
of G; as follows: replacing the segment v, v, of ¢; by the path v,vv,, denote the resulting
circuit by ¢}, and add a new 3-circuit v;vovv; to C*, denoted by c4. Then, we get C; as

follows
C1 = (€ \{es ) U{ets eal-

It is easy to see that L(C;) = 5 = I(c}) and {(cq) = 3.

For d; = 2 or d; > 2, every edge of G, is contained in precisely two circuits of C; and
L(C;) £ 6. So C; is an SCDC of G; and L(Cy) < 6. From the definition of FSCDC and
the procedure of obtaining C;, C; is also an FSCDC of G. Let the outer face of Gy be f;.
Next we add a da-vertex, along with d; edges to G, denote the resulting graph by G»,
which is also a near-triangulation. Then, we modify the feasible circuit(s) of 8f; of Cy, in
which the ends of the feasible edges is adjacent to the new added d,-vertex, to obtain C,
by applying the previous method. Clearly, C; is an FSCDC of G,. From the procedure
of obtaining C;, it can be seen that, for the edges in the outer face boundary of G;, the
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lengths of feasible circuits of C; are 3, 4 or 5. Since in the procedure of modifying C; to
C2, the length of each circuit of C; increase at most 2, and C, must contain a 3-circuit, the
longest circuit of C; is at most 7 and [(C;) = 3. Meanwhile, the length of feasible circuit
of each edge belonging to the outer face boundary of G, can also be 3, 4 or 5 from the
procedure of obtaining C,.

Repeating the above procedure, we can recursively get C. It may be verified that C is
an SCDC of G and L(C) < 7 and {(C) = 3.

If n = 6 and p(v) = 2, we can obtain an SCDC C by a similar methold, such that C is
composed of four 5-circuits. O

By Lemma 2.5 and Lemma 2.6, the following result can be directly proved.

Theorem 2.2 Let G be a planar near-triangulation of order n with at least one interior
vertex u. Let W" be the generating wheel of G and |V(W*")| > 5. Then, G admits an
equilibrium small circuit double cover Cy, such that, if G = W* orn; = n; = 1 and n = 6,
8(Co) = 0; otherwise §(Cy) < 4, where n; and n, are the numbers of 2-vertices and interior
vertices of G respectively.
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