Equilibrium Small Circuit Double Covers of Near-Triangulations *

LIU Tong-yin, LIU Yan-pei
(Dept. of Math., Northern Jiaotong University, Beijing 100044, China)

Abstract: A near-triangulation is such a connected planar graph whose inner faces are all triangles but the outer face may be not. Let G be a near-triangulation of order n and C be an SCDC (small circuit double cover)[2] of G. Let

$$\delta(\mathcal{C}_0) = \min \{ \max_{c_j \in \mathcal{C}} \{l(c_j)\} - \min_{c_j \in \mathcal{C}} \{l(c_j)\} \mid \mathcal{C} \text{ is an SCDC of } G \}.$$

Then, C_0 is said to be an equilibrium SCDC of G. In this paper, we show that if G is an outer planar graph, $\delta(C_0) < 2$, otherwise $\delta(C_0) < 4$.

Key words: small circuit double cover; near-triangulation.

Classification: AMS(2000) 05C10,05C38/CLC 0175.5

Document code: A **Article ID:** 1000-341X(2002)01-0035-07

1. Introduction

All graphs considered here are finite, undirected and simple (without loops or multiple edges). For a polyhedron Σ , the graph $G(\Sigma) = (V(\Sigma), E(\Sigma))$, where $V(\Sigma)$ and $E(\Sigma)$ are the sets of vertices and edges of Σ respectively, is called the underlying graph of Σ and Σ , an underlain polyhedron of $G(\Sigma)$. For a graph G = (V, E), if there is a polyhedron $\sum_{E \in S} S$ such that G is the underlying graph of Σ , then G is said to be embeddable on the surface S. The polyhedron is called an *embedding* of G. If a graph has an embedding in the plane, then it is said to be planar. The boundary of a face f is denoted by ∂f . Except the outer face of planar graph G, the other faces are called inner faces. If a vertex v of G does not belong to the outer face of G, then V is said to be an interior vertex of G. Let C be a circuit of C. If the length of C is C0, then the circuit is said to be an C1-circuit. Similarly, if the degree of a vertex is C2, it is called a C3-vertex. Terminologies and notations not explained here can be seen in [1].

Foundation item: Supported by the National Natural Science Foundation of China (69973001)

Biography: LIU Tong-yin (1960-), Ph. D.

^{*}Received date: 1998-09-23

Let \mathcal{C} be a collection of circuits of a graph G. If each edge of G belongs to exactly two members of \mathcal{C} , then \mathcal{C} is said to be a circuit double cover (CDC) of graph G. For a planar graph G of order n, if G admits a CDC such that $|\mathcal{C}| \leq n-1$, then \mathcal{C} is said to be a small circuit double cover (SCDC)[2] of G.

A triangulation is a simple planar graph in which every face is a triangle. A near-triangulation is such a connected planar graph whose inner faces are all triangles but the outer face may be not. If G is a planar graph and G has cut-vertices, we are allowed to consider the blocks of G for CDC or SCDC. So all near-triangulations considered here are 2-connected. Clearly, a triangulation is also a near-triangulation. If G is a planar graph and it has no interior vertex, it is called an outer planar graph.

Let G = (V, E) be a graph. A minor^[3] is a graph obtained from G by successively deleting and/or contracting edges of G while any multiple edge that might occur is replaced by a single edge and a loop by its end. A generator is a graph obtained from G by successively deleting vertices with their incident edges. Clearly, for a graph, its generator is also a minor.

Let G = (V, E) be a 2-connected near-triangulation of order n and f be the outer face of G. If G is an outer planar graph and G contains a triangle T in which $\forall e \in E(T)$, $e \notin E(\partial f)$, then T is said to be an interior triangle of G. Let G = (V, E) be a near-triangulation with at least one interior vertex u and |V(G)| = n. Then, $G[u \cup N(u)]$ is a wheel. In fact, if G has only one interior vertex, then G is a wheel by itself. Otherwise there is at least one vertex v which is not adjacent to u by the planarity of G.

Let v_0 be a vertex such that

$$d(u, v_0) = \max\{d(u, v) \mid d(u, v) \geq 2, v \in \partial f\},\$$

where d(u, v) is the distance between u and v. Then, we delete the vertex v_0 with its incident edges. Repeating the procedure, a wheel can be recursively obtained. Conversely, any near-triangulation can be obtained by successively adding a new vertex to the outer face with its incident edges. So $G[u \cup N(u)]$ is said to be a wheel generator of G, denoted by W^u .

In previous papers[4, 5], we sketched the proofs of the following results.

Theorem 1.1^[4] Every near-triangulation admits an SCDC.

Theorem 1.2^[5] Let G be an outer planar graph of order n and C is an SCDC of G. If G is a near-triangulation, then $|C| \leq n-2$ if and only if G contains an interior triangle.

We know that simple planar graphs on n vertices may have as many as 3n-6 edges. Suppose G admits an SCDC C. Since every edge of G is contained in precisely two circuits of C, we have $\sum_{i=1}^{m} l(c_i) \leq 6n-12$, where m=|C| and $c_i \in C$. Suppose $\bar{l}(c_i)$ is the average length of circuits of C, then we have $\bar{l}(c) \cdot m \leq \bar{l}(c) \cdot (n-1) \leq 6n-12$ and

$$\bar{l}(c) \leq 6 - \frac{6}{n-1}.$$

But what is the length of the longest circuit in C? It seems that the problem has not been treated in literatures. Here we consider the compactness of an SCDC C of G. Let

$$\delta(\mathcal{C}_0) = \min\{\max_{c_j \in \mathcal{C}} \{l(c_j)\} - \min_{c_j \in \mathcal{C}} \{l(c_j)\} \mid \mathcal{C} \text{ is an SCDC of } G\}.$$

Then, C is said to be an equilibrium small circuit double cover. For a near-triangulation G of order n, if G is an outer planar graph, we will prove that $\delta(C_0) = 2$; if G has at least one interior vertex, then $\delta(C_0) \le 4$.

2. Main results

Before obtaining the main results of the section, we provide some useful definitions and lemmas.

Let G be a planar near-triangulation of order n $(n \ge 4)$ and $\mathcal C$ be an SCDC of G. Let f be the outer face of G and $\partial f = v_1v_2 \cdots v_kv_1$. If there exists circuits c_1, c_2, \cdots, c_k in $\mathcal C$, such that $c_i \ne c_j$ for $i \ne j$ and $v_iv_{i+1} \in c_i$ $(i,j=1,2,\cdots,k,v_{k+1}=v_1)$, then $\mathcal C$ is said to be a fair small circuit double cover, denoted by FSCDC. The circuit c_i is called an associated circuit of v_iv_{i+1} of f. The set of all associated circuits is said to be the associated set of f, denoted by $\mathcal C_f$. Let $\mathcal C$ be an FSCDC of G. From the definition of FSCDC, we know that for $c_i, c_j \in \mathcal C$ $(i \ne j, i, j = 1, 2, \cdots, m, m \le n - 1)$, $|E(c_i) \cap E(c_j) \cap E(f)| \le 2$.

If G is an outer planar graph, then it is a Hamiltonian graph, $|\partial f| = n$ and $|C| \le n-1$. So G does not admit an FSCDC. If G contains at least one interior vertex, then we have the following lemma.

Lemma 2.1^[4] Every near-triangulation with at least one interior vertex admits an FSCDC.

Lemma 2.2^[5] Let G be an outer planar near-triangulation of order n with exactly two 2-vertices. Then, for any SCDC C of G, there are at least two 3-circuits in C and |C| = n-1. In what follows, let $L(C) = \max\{l(c_i)|\forall c_i \in C\}$ and $l(C) = \min\{l(c_i)|\forall c_i \in C\}$, where C is an SCDC of graph G.

Lemma 2.3 Let G be an outer planar near-triangulation on n vertices with only two 2-vertices. Then, G admits an SCDC C such that $L(C) \leq 4$.

Proof Let f be the outer face of G. Suppose u, v are the two 2-degree vertices, $N(u) = \{u_1, u_2\}$ and $N(v) = \{v_1, v_2\}$. Since G has n-1 faces and each face's boundary is a circuit, let C_1 be the collection of all the circuits. Then C_1 is composed of n-2 3-circuits and ∂f . We denote the collection of the n-2 3-circuits by $C_0 = \{c_i | i=1,2,\cdots n-2\}$. It is easy to see that each edge of G is contained in precisely two members of C_1 and $|C_1| = n-1$, hence, C_1 is an SCDC of G. As any two adjacent circuits of C_0 have a common edge, let $c_i' = (\partial c_i \triangle \partial c_{i+1})$ $(i=1,2,\cdots,n-3,c_i \in C_0)$. Let $C_2 = \{c_i' \mid i=1,2,\ldots,n-3\}$. Then, almost every edge of G belongs to two circuits of C_2 with the exception of the edges u_1u_2 , v_1v_2 , uu_i and $vv_j(i,j=1,2)$ which are contained in only one member of C_2 respectively. Adding two 3-circuits uu_1u_2u,vv_1v_2v to C_2 , we get the collection C as following

$$C = C_2 \bigcup \{uu_1u_2u, vv_1v_2v\}.$$

Then, C is a CDC of G and |C| = n - 1. It can be seen that L(C) = 4 and l(C) = 3. Hence the lemma holds. \Box

Let C be an SCDC of G and f be the outer face of G. For an edge e of ∂f , c_1 and c_2 are the two circuits that cover the edge e. Then, the shorter one is said to be the feasible

circuit of e.

Lemma 2.4 Let G be an outer planar near-triangulation of order $n \ (n \ge 5)$ with at least three 2-vertices. Then G admits an SCDC C such that L(C) = 5.

Proof Let f be the outer face of G. Suppose G has k ($k \geq 3$) 2-vertices, clearly, the k 2-vertices belong to ∂f because otherwise G would have a multi-edge. We delete one 2-vertex v_0 of ∂f , along with its incident edges, denoted the resulting graph by G_1 whose outer face is denoted by f_1 . If G_1 has exactly two 2-vertices, then we let $G^* = G_1$ and $f^* = f_1$. Otherwise we delete one 2-vertex v_1 of ∂f_1 , along with its incident edges, denoted the resulting graph by G_2 whose outer face is denoted by f_2 . Since G is a near-triangulation without interior vertex and it contains at least two 2-vertices that only belong to the boundary of the outer face of G, we can obtain G^* , which is a subgraph of G with only two 2-vertices, after repeating the above procedure in finite steps. Without loss of generality, the deleted 2-vertices are denoted in the order of $v_0, v_1, \cdots, v_{m-1}$ and the resulting graphs G_1, G_2, \cdots, G_m , respectively. Let n^* be the order of G^* . By the reason argument used in the proof of Lemma 2.2, G^* admits an SCDC C^* such that $L(C^*) = 4$, denoted the collection of 4-circuits of C^* by C_1 . Then $|C_1| = n^* - 3$.

Considering the reverse procedure of obtaining G^* from G, we add the deleted m 2-vertices $v_{m-1}, v_{m-2}, \cdots, v_0$ along with their incident edges to $G_m, G_{m-1}, \cdots, G_1$ to obtain the original graph G. Then the boundaries of new added triangles are 3-circuits, denoted by $c_m, c_{m-1}, \cdots, c_1$ respectively and C_2 , the set of all the 3-circuits. Hence, $|C_2| = m$. Meanwhile, we modify C^* to obtain C as follows. Let $e_i = \partial c_i \cap E(G_i)$ $(i = 1, 2, \cdots, m)$. Then, we take

$$C_m = (C^* \setminus \{c_m^*\}) \bigcup \{\partial c_m^* \triangle \partial c_m, c_m\},\$$

where c_m^* is the feasible circuit of e_m in \mathcal{C}^* . It can be checked that \mathcal{C}_m is an SCDC of G_m . Since the length of the feasible circuit is at most 4, $L(\mathcal{C}_m) = 5$ and $l(\mathcal{C}_m) = 3$. Then we modify \mathcal{C}_{i+1} to obtain \mathcal{C}_i in the same way $(i = m-1, m-2, \cdots, 2, 1)$. At last, let \mathcal{C}_1 be \mathcal{C} . It can be checked that \mathcal{C} is an SCDC of G. Notice that the length of the modified feasible circuit in each procedure of obtaining G is at most 4 and there exists at least one 3-circuits of the SCDC of the resulting graph, $L(\mathcal{C}) = 5$ and $l(\mathcal{C}) = 3$. Hence, the lemma holds. \square

Corallary 2.1 Let G be an outer planar 2-connected near-triangulation of order n with $k \ (k \geq 2)$ 2-vertices. Then, G admits an SCDC C, such that |C| = n - 1 and $|C_1| = k$, where C_1 is the collection of 3-circuits in C.

Let G be an outer planar graph on n vertices and C be an SCDC of G. If G is a near-triangulation, then |E(G)| = 2n - 3. Moreover, $\sum_{i=1}^{m} l(c_i) = 4n - 6$, where m = |C| and $m \le n - 1$, $c_i \in C$. So we have $\bar{l}(c) \cdot m \le \bar{l}(c) \cdot (n - 1) \le 4n - 6$ and

$$\bar{l}(c) \leq 4 - \frac{2}{n-1}. \tag{1}$$

From Lemma 2.4, we know that G admits an SCDC C, such that 5 is the upbound for L(C).

Theorem 2.1 Let G be an outer planar graph of order n and n_1 be the number of 2-vertices of G. If G is a near-triangulation, then G admits an equilibrium small circuit double cover C_0 , such that

- (a) $\delta(C_0) = 0$, if n = 3;
- (b) $\delta(C_0) = 1$, if $n_1 = 2$ and $n \ge 4$, or $n_1 = 3$ and n = 6;
- (c) $\delta(\mathcal{C}_0) \leq 2$, if $n_1 \geq 3$ and $n \geq 7$.

Proof Let f be the outer face of G. Since G is an outer planar near-triangulation, it contains at least two 2-vertices. If n = 3, *i.e.*, G is a triangle, then $L(C_0) = l(C_0) = 3$. Hence (a) follows.

If G contains only two 2-vertices and G is not a triangle, then $|\partial f| \geq 4$. Let C be an SCDC of G. By Lemma 2.2, |C| = n - 1 and there are at least two 3-circuits in C. Therefore, l(C) = 3. For any SCDC C of G, the number of 3-circuits of SCDC C' obtained from Lemma 2.3 is the smallest, that is 2, and all other circuits are 4-circuits. Then, from (1) and the definition of equilibrium small circuit double cover, $\delta(C_0) = 1$.

If $n_1=3$ and n=6, then from Theorem 1.2, G admits an SCDC C such that $|C| \le n-2=4$. In fact, if |C| < 4, the length of each circuit of C is at least 6 since |E(G)|=9. Since |V(G)|=6, only one 6-circuit can be contained in G, i.e., ∂f . Then, C is not an SCDC of G. So if $|C| \le 4$, then |C|=4. Let T_0 be the interior triangle and T_1 , T_2 and T_3 be the three triangles around T_0 clockwisely. Let

$$c_i = \partial T_0 \triangle \partial T_i \triangle \partial T_{i+1} \ (i = 1, 2),$$
 $c_3 = \partial T_0 \triangle \partial T_1,$ $c_4 = \partial T_0 \triangle \partial T_3.$

Let

$$C = \{c_i \mid i = 1, 2, 3, 4\}.$$

where $l(c_i) = 5$ (i = 1, 2) and $l(c_i) = 4$ (i = 3, 4). It can be seen that each edge of G is contained in exactly two circuits of C. So G admits an SCDC C such that |C| = 4 and L(C) = 5, l(C) = 4. Since 2|E(G)| = 18, there is no SCDC of G such that it contains five circuits having equal length or four circuits with same length. So from the definition of equilibrium small circuit double cover of G, $\delta(C_0) = 1$. These imply (b).

If $n_1 \geq 3$ and $n \geq 7$, by Lemma 2.4, G admits an SCDC C^* such that $|C^*| \leq n-1$ and $L(C^*) = 5$, $l(C^*) = 3$. By the definition of equilibrium small circuit double cover, $\delta(C_0) \leq 2$.

The proof is completed. \Box

Lemma 2.5 Every wheel admits an equilibrium small circuit double cover C_0 , such that $\delta(C_0) = 0$.

Proof Let G be a wheel of order n. Let f_1, f_2, \dots, f_{n-1} be the n-1 inner faces of G in clockwise. Take

$$\mathcal{C} = \{\partial f_i \triangle \partial f_{i+1}) \mid i = 1, 2, \cdots, n-1\}$$

where the addition in the suffixes is to be modulo n-1. It is easy to see that C is an SCDC such that |C| = n - 1 and L(C) = l(C) = 4. Meanwhile, it can be seen that C is also an FSCDC from Lemma 2.1. Hence, we proved the lemma. \Box

Lemma 2.6 Let G be a planar near-triangulation of order n with at least one interior vertex u. Let W^u be the wheel generator of G and $|V(W^u)| \ge 5$. If there is at least one vertex v such that $d(u,v) \ge 2$, then G admits an SCDC C such that $L(C) \le 7$, l(C) = 3 except for n = 6 with $\rho(v) = 2$, L(C) = l(C) = 5.

Proof In the reverse procedure of obtaining W^u , we firstly add a d_1 -vertex v with its incident d_1 edges to W^u . Denote the resulting graph by G_1 . By Lemma 2.5, W^u admits an SCDC C^* , such that $|C^*| = |V(W^u)| - 1$ and $L(C^*) = l(C^*) = 4$. For G_1 , there are two cases.

Case 1. $d_1 > 2$.

Let the neighbors of new added d_1 -vertex v be v_1, v_2, \dots, v_{d_1} in sequence. Since \mathcal{C} is also an FSCDC, corresponding to each edge $v_i v_{i+1}$ $(i=1,2,\cdots,d_1-1)$ of W^u , the associated circuit of \mathcal{C}^* are denoted by $c_1, c_2, \cdots, c_{d_1-1}$, which contain the edge uv_i $(i=1,2,\cdots,d_1-1)$ respectively. We modify \mathcal{C}^* to obtain the collection \mathcal{C}_1 of G_1 as follows: we replace the segment v_1v_2 of c_1 by the path v_1vv_2 and denote the resulting circuit by c_1^1 . Then, we replace the segment v_iv_{i+1} of c_i by the path $v_iv_{i-1}vv_{i+1}$ and denote the resulting circuits by c_i^1 $(i=2,3,\cdots,d_1-1)$. Finally, we add a 3-circuit $v_{d_1}v_{d_1-1}vv_{d_1}$ to \mathcal{C}^* , denoted by c_{d_1} . Then, we get \mathcal{C}_1

$$C_1 = (C^* \setminus \{c_i | i = 1, 2, \cdots, d_1 - 1\}) \bigcup \{c_i^1 | i = 1, 2, \cdots, d_1 - 1\} \bigcup \{c_{d_1}\}.$$

It is easy to see that the length of the longest circuit of C_1 is 6, $l(c_1^1) = 5$, $l(c_{d_1}) = 3$ and the length of other circuits of C_1 is 4.

Case 2. $d_1 = 2$.

We follow the notations of Case 1 and let $N(v) = \{v_1, v_2\}$. Corresponding to the edge v_1v_2 of W^u , the associated circuit of C^* is c_1 . We modify C^* to obtain the collection C_1 of G_1 as follows: replacing the segment v_1v_2 of c_1 by the path v_1vv_2 , denote the resulting circuit by c_1^1 , and add a new 3-circuit $v_1v_2vv_1$ to C^* , denoted by c_d . Then, we get C_1 as follows

$$\mathcal{C}_1 = (\mathcal{C}^* \setminus \{c_1\}) \bigcup \{c_1^1, c_d\}.$$

It is easy to see that $L(C_1) = 5 = l(c_1^1)$ and $l(c_d) = 3$.

For $d_1 = 2$ or $d_1 > 2$, every edge of G_1 is contained in precisely two circuits of C_1 and $L(C_1) \le 6$. So C_1 is an SCDC of G_1 and $L(C_1) \le 6$. From the definition of FSCDC and the procedure of obtaining C_1 , C_1 is also an FSCDC of G. Let the outer face of G_1 be f_1 . Next we add a d_2 -vertex, along with d_2 edges to G_1 , denote the resulting graph by G_2 , which is also a near-triangulation. Then, we modify the feasible circuit(s) of ∂f_1 of C_1 , in which the ends of the feasible edges is adjacent to the new added d_2 -vertex, to obtain C_2 by applying the previous method. Clearly, C_2 is an FSCDC of G_2 . From the procedure of obtaining C_1 , it can be seen that, for the edges in the outer face boundary of G_1 , the

lengths of feasible circuits of C_1 are 3, 4 or 5. Since in the procedure of modifying C_1 to C_2 , the length of each circuit of C_1 increase at most 2, and C_2 must contain a 3-circuit, the longest circuit of C_2 is at most 7 and $I(C_2) = 3$. Meanwhile, the length of feasible circuit of each edge belonging to the outer face boundary of G_2 can also be 3, 4 or 5 from the procedure of obtaining C_2 .

Repeating the above procedure, we can recursively get C. It may be verified that C is an SCDC of G and $L(C) \leq 7$ and l(C) = 3.

If n = 6 and $\rho(v) = 2$, we can obtain an SCDC C by a similar methold, such that C is composed of four 5-circuits. \Box

By Lemma 2.5 and Lemma 2.6, the following result can be directly proved.

Theorem 2.2 Let G be a planar near-triangulation of order n with at least one interior vertex u. Let W^u be the generating wheel of G and $|V(W^u)| \ge 5$. Then, G admits an equilibrium small circuit double cover C_0 , such that, if $G = W^u$ or $n_1 = n_2 = 1$ and n = 6, $\delta(C_0) = 0$; otherwise $\delta(C_0) \le 4$, where n_1 and n_2 are the numbers of 2-vertices and interior vertices of G respectively.

Acknowledgment Thanks are due to the referees for careful reading with suggestions which have improved the presentation.

References:

- [1] LIU Y P. Embeddability in Graphs [M]. Kluwer, Dordrecht/Boston/London, 1995.
- [2] BONDY J A. Small cycle double covers of graphs [J]. circuits and Rays, (G.hahn eds.), Elsevire science, 1990, 21-40.
- [3] THOMASSEN C. Embedding and minors [J]. Handbook of combinatorics, (R.Graham ect. eds.), Elsevire science, 1995, 301-349.
- [4] LIU T Y, LIU Y P. On generators of planar triangulations for findinf small circuit double covers [J]. OR Trans., 1999, 2(4): 32-38.
- [5] LIU T Y, LIU Y P. Near-triangulations of small circuit double cover with at most n-2 [J]. J. Northern Jiaotong Uni., 2000, 24(2): 65-72.

近三角剖分图的均衡二重少圈覆盖

刘同印, 刘彦佩 (北方交通大学数学系,北京100044)

摘 要: 近三角剖分图是一连通平面图,其内面均为三角形而其外面可能不是. 令 G 为一具有 n 个节点的近三角剖分图, C 为 G 的一个小圈二重覆盖 (SCDC)^[2]. 令

$$\delta(\mathcal{C}_0) = \min\{\max_{c_j \in \mathcal{C}} \{l(c_j)\} - \min_{c_j \in \mathcal{C}} \{l(c_j)\} \mid \mathcal{C} \ \text{为 G 的一个 SCDC}\},$$

则 C_0 称为 G 的均衡小圈二重覆盖. 本文将证明: 若 G 为外平面图,则 $\delta(C_0) \leq 2$; 否则 $\delta(C_0) \leq 4$.