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Abstract: In this paper we introduce an implementation for the efficient numerical
solution of exterior initial boundary value problemn for parabolic equation. The problem
is reformulated as an equivalent one on a boundary T' using natural boundary reduction.
The governing equation is first discretized in time, leading to a time-stepping scheme,
where an exterior elliptic problem has to be solved in each time step. By Fourier ex-
pansion, we derive a natural integral cquation of the elliptic problem related to time
step and Poisson integral integral forumla over exterior circular domain. Finite element
discretization of the natural integral equation is employed to solve this problem. The
computational aspects of this method are discussed. Numerical results are presented to
illustrate feasibility and efficiency of our method.
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1. Introduction

To solve a partial differential equation numerically in domain which extends to infinity,
one commonly used method is to cut down unbounded part of spatial domain, i.e., an
appropriate artificial boundary I'y is introduced, and the primal problem is to restricte
the computation to an appropriate large finite spatial domain D. Then it is necessary to
introduce a boundary condition on the artificial boundary which bounds D. This naturally
leads to the question “ Does there exist an artificial boundary condition such that the
numerical solution of the primal problem in D, with this boundary condition, coincides
exactly with the restriction to D of the solution in the unbounded domain?” The question
has been answered affirmatively, such as the coupled method based on boundary element
method(see, e.g.[7], [8]). We here shall concentrate on considering the problem in original
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domain. Since boundary element methods can convert the problem in domain to integral
equation on the boundary of the domain, such as classical boundary element methods. The
natural boundary element methods initiated and developed by Feng Kang and Yu Dehao
in the late seventies(see, e.g. [l — 9]) have been shown to possess good computational
properties and to be very effective in practice. They have some distinctive advantages
comparing with the classical boundary element methods. For example, it is easy to be
implemented on the computing, it has good stability of the numerical results, it is fully
compatible with finite element method, and it can be coupled with finite element method
naturally and directly. For general linear elliptic problems, the theory of natural boundary
element method is being perfected(see, e.g. [9]). But up to now, natural boundary element
method has not been applied to solve evolution equations yet, such as heat conduction
problems, wave equations, etc. Mathematics techniques used for elliptic problems can
not be applied to the time-dependent problem directly. Therefore, we must explore some
new approaches. Motivated by the above reasons, we make an attempt in this field. In
this paper a new and effectual method is given and natural boundary reduction for the
parabolic equations is realized.

Let Q be a simple connected domain in R? with smooth boundary I := 8Q, Q° :=
R\Q. For any fixed positive real number T, we write J := (0,7). Now considering the
following initial boundary value problem:

u — Au= f(z,t), (z,t) € Q°xJ,
g% = g(z,t), (z,t) €T x J, (1.1)
u(z,0) = up(z), zcQ°.

Here u(z,t) is the unknown function, u,; denotes derivative with respect to time ¢, and
f(z,t), g(z,t) and up(z) are given functions, which satisfy appropriate conditions. %
is the normal derivative operator on I' (n is the unit normal vector on boundary T' of
domain 2° toward the interior of domain ). Futhermore, we assume the function u(z,t)
is bounded at infinity. However, there is no need in a “radiation condition” at infinity [10,
11).

2. Discrete problem in time.

According to the theory of natural boundary element methods[9], it is major work for
us to derive the expression of natural integral operator Ky, and to realize its numerical
solution. Since the expressions of natural integral operator K and Poisson integral op-
erator P depend on geometric figure of domain, we assume that domain  is a circular
domain of radius R, centered at the origin. For the sake of convenience, we also assume
that the solution considered the problem has appropriate smooth.

Let 7 be the time-step interval, and write t;, = k-7, u¥(2) = u(,t;.), 2F(2) = w(z, tz).
Taylor expansion applied to equation (1.1) consists of the following two equations

2 — Adk = fF (2.1)

uF = wf T L r{(1 - y)R 4 4R (2.2)
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Here y € (0,1} and k = 1,2,---,[T/r]. We define
A= (V)7L @ = dF T e r(1 - )Y, R = —dR - fh
After some algebra, equations (2.1) — (2.2) yield the following formulae
AuF ~ A2uk = A2k e Qe (2.3)

2 = A - ab). (2.4)

We can summarize the solution procedure of the above discrete problem as follows:

I) Prodiction

k= u* (1 - y) (2.5)
IT) Solve the problem
A - AP = A2 fF z e Qe (2.6)
ou® .
—a% =gt zel, (2.7)
luf| < 400, |z| — +o00. (2.8)
IIT) Update value
& = N2 (b — @b, (2.9)

From the theory of natural boundary reduction, the Dirichlet boundary value ulg and

Neumann boundary value %L: satisfy the following relation

du* 7k k
-5;+N(A’R’f ):’C,\"U.U, (210)

the solution u* and its Dirichlet boundary value uf is given as follows:
u* = Py -uf}' + F(\ R; f"',r,@), (2.11)

where K, and P, are known as natural integral operator and Poisson integral operator,
respectively. Equations (2.10) and (2.11) are usually known as natural integral equation
and Poisson integral formula, respectively. Equations (2.10) and (2.11) are equivalent
to the problems (2.6)-(2.8). In addition, equation (2.10) is equivalent to the following
variational problem:

Find «* € H'/*(T) such that (2.12)
b(uk,oF) = (25 4 N(), R; f*),0%), Wb € HY3(T), '
where
bat, o) = (Cauk, o) = [(Kaid)-o4a5, (wo)i= [wpdS. (213)
r r

The meanings of some notations can be seen in the next text. The expressions of natural
integral equation and Poisson integral formula will be given in Section 3.
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3. Natural boundary reduction

Boundary T', which is a circle of radius R, centered at the origin, can be expressed as
follows:T' = {(r,6) | » = R, 6 € [0,2x]}. While the direction of the unit outward normal
to I is opposite to the direction of 7, i.e. % = —aa—r. By Fourier expansion, the solution

of equations (2.6)-(2.8) in the polar coordinates can be expressed with the following form:
+ oo
u*(r,6) = —ao (r)+ Z[a"(r) cos nb + b,(r)sin né)]. (3.1)

It is not difficult to get the solution u*(r,8) of the equations (2.6)-(2.8) as follows:

1 + oo 27 .
L Z ens )/0 cosn(8 — 0')- u*(R,0)d8' + F(\ R; f*,7,6), >R
"= (3.2)
where
+o oo .
F(\R; f* r6) = /\22 Z En /}: 0> Gr(r,0)[fr (o) cosnb + f¥*(0)sinnblde, (3.3)
i ooy _ | $0(0) Bulr)/Bue), 7 <o,
e = S i vae ey
$n(0) = Kn(Aa), (3.5)
¥n(0) = In(A0)pn(R) — ¢u(0)In(AR), (3.6)
En(0) = ¥u(0)¢n(0) = ¢u(0)d (o), (3.7)

) 2m -~
f,’ic(ﬂ) — l/ CcOSs n9 N fk(a,e)dg,
T Jo

2 (0) = 1/2” sinnf - f*(,8)do,
T Jo

where I,,(z) and K,(z) are respectively modified Bessel functions of the first and second
kind,n =0,1,2,---. And ¢, = 1,n = 0; ¢, = 2,n > 0. We now differentiate both sides of
(3.2) with respect to r, and take limit as » approaches R + 0, we get the boundary integral
equation of the Neumann problem in ¢

Ou*(R, 0 A EX K (r) g N krm o -
“_;n__): I ((I\R))/U cos(6 — ') - u*(R,0')d0 - N(A, B; f*,6),  (3.8)
n=0 n
where
N\ R; 7*,6) an/ Ga(\, R;0) - [F5(0) cosn + f5*(o) sinnb)do,  (3.9)

n=0
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. K (X
Gn(/\,R;a):-F{——((A—;T))%, n=012. (3.10)

Equations (3.2) and (3.8) are respectively Poisson integral formula and natural integral
equation. If we obtain function w*( R, #) by narural integral equation (3.8), we can get the
solution of the original initial boundary value problem (1.1) by Poisson integral formula
(3.2). But the solution of the problem can be obtained directly by Poisson integral formula
(3.2) for Cauchy-Dirichlet initial boundary value problem, because the function «*(R,8)
is given.

4. Direct investigation of natural integral operator

We now investigate some properties of natural integral operator. To this end, we will
need some preliminaries. For all f € H?(T'), f(R,0) can be expressed as follows(in the
sense of mean convergence).

+20 .
f(R,@) = Z Jo- ema,

where f.(n € Z) is the coefficients of Fourier series. We introduce the H?(I')—norm of
function f(R,8) as follows

S too
£l = DL+ 0?7 - | fal?1/2 (4.1)

=
Lemma 4.1 Letu = 12w, ¢, v = Y52 v, ™ then uxv = L E% (21uqv,)-e™.

Where * denotes the convolution with respect to variable §. O

If we define hy(z) := 7{}—2—()‘%, then natural integral operator Ky can be expressed by

Lemma 4.1 as follows .
Kau= =2 uha(AR) - €™ (4.2)

Lemma 4.2 For the modified Bessel function K, (z), (z > 0), the following assertion
holds

l Krlw(z) IZ 1
K,.(z) 1+ n?
Proof From [12], the Hankel function H ,(Ll)(:c) of the first kind has the following asymptotic
formula for large index

=0(1), n— +oo. (4.3)

2 2n 1
(D(g) = —iy/ —(=)"{1+ O(~ —
O T
and K,(z) satisfies .
Kn(z) = gfei%ff,g”(w)

Ku() = \/z(gf)m +O(H)), n— too (4.4)
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as well as the recursion formula(see [12])
KL(e) = 3 (Knia(e) + Kuna(e))y (n2 i Ko@) = —Ka(®).  (49)

By (4.5), the expression we wish to bound becomes

Kn(z) 1, Knp(z) | Knoa(2)
n —_ = > 1 . 4-6
Kn(x) 2{ Kn(z) + Kn(a:) }1 (n - ) ( )
Using (4.4) in (4.6), we see the first term is O(n), and the second term tends zero as n
approaches +o0, yielding

1
14 n?

Kﬁ(x)lz . 1

|Kn(ac) 1+n? O(n*) =0(1), n— 4oo.

Theorem 4.3 For p > 0, natural integral operator Ky is a bounded linear operator from
HPYY2(T) to HP~Y/%(T), i.e. there exists a positive constant C such that

”K:/\f”p—l/Z,l" S C- Hf”p+1/2,F1 Vf € HP+1/2(1"). (47)

Proof Obviously, natural integral operator Ky is a linear operator on H?*1/%(T'). For
any f € HPYY/2(T),(p > 0), setting F := K, f. From (4.2) we have F = S IXF, - et
where F,, = —Af,h.(AR). From Lemma 4.2, for any n € Z, the following inequality holds

1

ha 2. <
hn(AR) - 1 €

Thus

+o0
A f s o = IFI 1o = Do (L4 n?Y 72 B

+00 i
=X AR (OB 1 5)
+oc
S C'\Z Z(l + n2)1)+1/2 : |fn!2

=Ch- Hf||;2,+1/2,1‘°

Theorem 4.4 The bilinear form b(-,-) induced by natural integral operator Ky 1s a
symmetric and continuous on HY?(T') x HY/%(T') and non-negative definite on HY/*(T),
ie.,

(i) b(u,v) = b(v,u),Vu,v € HY*(T);

(ii) There exists a positive constant C such that

b(u,v) < C- ”“Hl/z,r : HUH1/2.P, Vu,v € Hl/z(”?

(iii) b(w,u) > 0,Vu € HY(T).
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Proof (i) From Lemma 4.1, for any u € HY/*(T) and v € H/%(T), since

b(u,v) = (Kyu,v) = /Zvn eme (Kau)dS

+ 00

2 .
- —AR/ Zvn enf) . (Zum-hm(/\R).elmg)dB
= -AR-27 Zhn(/\R) UV,

SO
+0c

b(v,u) = -AR - 27 Z hu(AR) - vpuy, = b(u,v);

-0

(i) By Theorem 4.3., for any u € H'/*(T') and v € HY(T),
b(u,v) = (Kau,v) < |[Kaull_1/20 - [[ollj2r < Callullijzr - llolly/2r;

(iii) For any u € HY/*(T), by (i) we have

+oc
b(u,u) = AR - 27 Y h,(AR) - [ua/.

—

Since K,(z) > 0 for ¢ > 0, so we get K/ (z) < 0 by (4.5). We get h,(z) < 0 for z > 0.
Which proves last assertion. O

5. Numerical implementation of natural integral equation.

Now we partition the circumference I' into some finite elements, which satisfies usual
regular conditions. For simplicity, we take uniform subdivision. Now let §;(T') be the
finite element subspace of space HI/Z(F). So we can obtain the approximate variational
problem of the problem (2.12) as follows:

{ Find uh € Sp(T) such that (5.1)

b(ub,v*) = (¢* + N(\ R; f*,0),v%), Yok € 5, (T)

If we take Si(T') = span{v:(8),%2(8),---,¥nm(0)}, then we get the following system of
algebaric equations of problem (5.1)

Q- Uk =" (5.2)

where
Q:= (qij)MXM;Uk = (ull\:vulzc?""uﬁff)Tvbk = (bllivbga""bﬁ/I)T’

= | (M (R, 0) + N\ R 14,0) - 95(0)06
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AR K /\R) o

gi; = — szn

5.1. Calculation of the elements of the stiffness matrix.
5.1.1. Piecewise linear basis functions

/2w cosn(0 — 6')y;(0);(6')dode’.

Taking
%(9 —0;_1), 6¢€[0:1,6]
L,(H) = 2_1r(9i+1 - 9), 0 e [9,’,0i+1] (5.3)
0 otherwise,
. . i ol 1, 1=3, .. .
where i = 1,2,---,N; 6; = g2m. Li(8;) = & = {0, it i,j = 1,2,---,N;

SN Li(6) = 1. and span{L;()}}L, c HY(T) ¢ HY*T). It is not difficult to obtain
the following results

27X  K)(AR) 2N4 = K,', 4, nT i—j
RS DR S LR R R
n=1

Obviously, ¢;; = ¢;i, %,j = 1,2,---, N. Setting

27A _K((AR) 2N4 X1 K/ (AR) . 4 n7 nm
Uy = — NZ{KU( o ,,2:1"41( )sm (TV-)'COS(T-?.W)},
m=01,-- N—1. (5.5)

The series a., is convergent(See Theorem 5.1). Thus

qi; = a[i—j| = 4,4, ’La] = 1)27 ) "7Na (56)
Q = (aji—j))nxn = ((a0, a1, -, an-1))- (5.7)
The stiffness matrix @ is a cyclical matrix producted by ag, a1, --,an-1.
ag a az -+ AaAN-1
aN-1 @ ap ‘- aN-32
Q=
ap a2 az --- 4y NxN
Note that a; = ay_;(¢ = 0,1,2,-- -, N — 1), so we only calculate [%] + 1 elements, and can

get the matrix Q. It is easy to be implemented on calculation and storage.
The approximate expression of Poisson integral formula (3.2) as follows:

N 2 +
k 1 k IXU(/\T 2N 1 Kn . MW, 27
uh(r,O):—Z { Z (sin —)* - cosn(f — j—)]}+
N o n2 K N N
F(\ R; fk,r,o), r> R. (5.8)
— 184 —
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5.1.2. Piecewise quadratic basis functions

We take
20 — 03i—2) - (02 — 0), 0 € [025_3,0],
p2i-1(0) = { E) a e) (0 : othe[rvzvisz. ! (5.9)
%(%)2(9 — 02i1)(0 — 02_2), 0 € [02_5,05),
p2(0) = ¢ (V0 = 02:41)(0 — O2i42), 6 € (B2, 02i42), (5.10)
0, otherwise,

i:1127"'1N7

satisfying o1 (6;) = 6k,k Jj=1,2,--- 2N. where 8§, = 1:, m,t=1,2,.---,2N. We know

easy span{1(6), p2(0),- -, p2n (0 )} C HY(T) C HY*(T), and T2, 0;(8) = 1. Tt is not
difficult to obtain the following relations

2i2j = bl Qai—12j-1 = gy Q2j2ie1 = dimjoq (12§, d_q = dy).

where
/\hz KO(/\ 9 IX 1 K| AR)
by, = 2K0 h4 Z 3 ol /\R) h sin 2nh — cos 2nh
—3) - cos 2mnhl},
8AR? K{,(/\R 18 = 1 K/ /\R)
i b7 TR Z nt K, (\R) hsm"h

cos nh) - cos 2mnh]} (5.11)

4\R? Ki(AR) 9 X 1 K/(AR)
__ ) _ 9 ~_sinnh —
b = e R OR) B < [n4 K,,(/\R)( nf, S nh = cosmh)

.(% sin2nh — cos 2nh — 3) - cos 2(m + )nh]}
m=20,1,2,---,N - 1.

Note that by _; = b, cy_j =¢j,dnv_j =dj_; (=0,1,2,--- N — 1). We only calculate
b, by, b[#]; €0y C1ytry Cpays do, dy, -, d[y%']'

and can obtain matrix @. It is easy to be implemented on calculation and storage.
The approximate expression of Poisson integral formula (3.2) as follows:

2 Ko(Ar) 4 X1 Kn(/\r
uh r,0) Z{ 3 Ko(A hz g w2 K,L(/\R) sm nh—
. 1 Ko(Ar)
cos nh) - cosn(0 — (2] ~ 1)h)] - ug;_y + 13 Ko(( AR)
= 2
_ e — _ . 6—
Z n? K nh sin 2nh — cos 2nh — 3) - cos n(
2Jh)] ' u2j} + F(’\a Ra fk)rao)) r> R. (512)
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Remark 5.1 The stiffness matrix of the system of linear algebraic equations obtained
by the above quadratic basis functions does not use the results obtained by linear basis
functions. Of course, we can construct quadratic basis functions based on linear basis
functions, so that we can make best use of the results obtained by linear basis functions.
We can refer to [9].

Theorem 5.1 The series a,,, by, ¢, and d,,, are all absolute convergent.

Proof From Lemma 4.1., the following inequality holds

Ki(OR), 1

%.0R) T S

So, we see that the series a,,, by, ¢,, and d,, are convergent like 3> n~2, which proves our
assertion. O

5.2. Numerical solution procedure. From the above statement, the numerical
solution procedure is summarized as foliows:

o For time-step 7, loop v*: k=1,2,-----.

Step 1. Compute the piedjcted value @* by using (2.5).
Step 2. uM(0) — @*,

— Loop u®): 4 =1,2,------
Step 3. Find N(), R; f*,6) by using (3.9).
* Iteration: Solve the system of algebraic equations to obtain U* :
Step 4. Solve the system of algebraic equations by using (5.2) to obtain
solutions U : j=1,2,....-. .
Step 5. Check the convergence of UM, If converged, U* «= UM, go
to Step 6; else continue.

* Next j.
Step 6. Find F(\, R; f*,r,6) by using (3.3).
Step 7. Find u*() by using (5.8) or (5.12).
Step 8. Check u*(); If it satisfies conditions given, u* <= u*() go to Step
9; else continue.

— Next i
Step 9. Update z* by using (2.9).
¢ Next time level loop.

Since the problem considered is time-dependent, we take the time-step loop iteration
tosolveu® (k =1,2,------ ) for each time ;. The outermost loop in the solution procedure
Just complete the procedure. Of course, if the problem is elliptic, there is no need the loop.
We now make some comments on the computational procedure.
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Remark 5.2 The algebraic system (5.2) is solved by using many methods, but it had
better use iteration methods so that we make best use of the property of the cyclical
matrix, and decrease storage.

Remark 5.3 The computational procedure involves the computation of the integrals
N(A,R;f"',@) and F(A,R;fk,r,O). We may restrict R < r < +o0 to R < 7 < rrge.
They are calculated numerically by using a simple trapezoidal rule per integration cell in
both the r—and—-@ directions. At the same time, the expressions for N(A, R; f’“,f)) and
F(\ R; f* r 6) involve infinite series. In practice all the infinite sums are truncated after
a finite number of terms, M;. So are the expressions (5.5), (5.8), (5.11) and (5.12).

6. Numerical examples.

Now we present a few numerical results for the problem considered. Considering the
problem with exterior unit circle domain as follows. Taking f(z,t) = {— % sin(3nr) +

3 L cos(3nr)} - e~ (¥t Where r = z? + 22, Functions g(z,t) = —em (T up(z) =
—(¥)? - Lsin(2rr). We calculate the approximate solutions u*(1,0) of natural integral
equation by using the above methods. We substitute Zﬁi‘l for ;Lfl in the expressions of

the elements of the stiffness matrix and integrals N (A, 1; f"',B) and F(A,1; f*.r 6). Error
denotes maximum of the relative error. The computational results are as follows.

TABLE 6.1. Linear element, y = 1, ¢ = 0.2 TABLE 6.1. Quadratic element, vy = 1, ¢t = 0.2

error Error
M M; =005 =002 7r=0.0125 M M, =005 t=0025 71=0.0125
8 20 13.876254 12.102372 10.104215 8 20 12.345236 10.110225 7.958762
16 40 4.154872  3.522475  3.112512 16 40 3.221164  3.000563 2.243254
32 80 1.627335 1.102134 1.001237 32 80  01.895462  (1.815463 (.680512
64 120 0.532244 (.322768  (1.299825 64 120 0.293426 0.224532 0.202754

The numerical results above show that natural boundary element method is very effec-
tual. But we see that it is no quite evident that the numerical results by using quadratic
element is better than the those by using linear element. This is different from the elliptic
problems. The main reason may be the numerical integrations and the choice of time-step,
because the error must be composed of time-step and interpolation.
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