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Abstract: This paper investigates the maximal and minimal solutions of periodic bound-
ary value problems for second order integro-differential equations in Banach spaces by
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1. Introduction

The use of monotone iterative methods in the study of the periodic boundary value
problems for integro-differential equations in Banach spaces has recently been quite ex-
tensive (see, for example [1-4]). The paper [1] investigates the existence of maximal and
minimal solutions of periodic boundary value problems for first order integro-differential
equations in real number spaces by establishing a comparison result and using the upper
and lower solutions. These methods have been extended and improved and more profound
results have been obtained in [2]. In this paper, we shall present the comparison result
for second order problems in Banach spaces, and investigate the existence of maximal and
minimal solutions of periodic boundary value problems for second order integro-differential
equations in Banach spaces.

Let (E,|-|) be a Banach space which is partially ordered by a cone P of E, in this paper
we shall consider the following second order periodic boundary value problem (PBVP):

v’ = f(t,u,Tu), t€J ae,
{ u(0) = u(a), v/(0) = v'(a), (1)
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where, f € C(J X E x E,E),J = [0,a] for a > 0, the mapping T : E — E be defined by

(Tz)(t) = /Ot K(t, s)z(s)ds, (2)

with K € C(D,R;). Let D = {(t,s) € J xJ : t > s}, and So = maxp K(t,s) (then
we have that Sp > 0). The function u € C?(J, E) is called a solution of PBVP(1), if u
satisfies equation (1). Throughout this paper we always assume that z < y if and only if
z(t) < y(t) for every t € J and any z,y € C(J, E).

2. Hypotheses and Auxiliary Results

Lemma 1 (comparison results) Assume that p € C*(J, E) satisfies
p"<-Mp-NTp-r,, (3)

where M > 0 and N > 0 satisfy that

&M+£&N<% (4)
and
I 0 ifp(0) < p(a) and p’(0) < p(a),
P71 B, ifp(0) > p(a) and p'(0) > p'(a),
with

g, = { (M2 1 23)((p(0) ~ p(a)) + (#/(0) ~ #/(a))] if e < 2,

) p
(ME2 4 NSy ((0) - p(a)) + (2'(0) ~ p'(a))] if @ > 2,
then p(t) <0fortelJ.

Lemma 2 Assume that p € C1(J, E) satisfies
p" 2 Mp+ NTp + 1, (5)

where M > 0 and N > 0 satisfy (4) and
_ ] 0 ifp(0) > p(a) and p'(0) > p'(a),
=Y a, ifp(0) < p(a) and p'(0) < p'(a),

with

o ={ Mleogta? | Mslestf e NSy ) - p(0) + (p'(a) ~ (0))] ifa <2,
P\ Mlestier y NSulecth NS ((p(a) - p(0)) + (¢(a) ~ #(0))] ifa>2,

a

-+

then p(t) < 0 fort € J.
The proof of the above two lemmas is omitted, similar results we see [5].

Lemma 3 The function p € C?%(J, E) is the solution of the PBVP(1) if and only if the
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function z, where ¢ = (z1,22) = (i, '), is solution of the operator equation Az = z, the
components of A = (Al,Az) being defined by

(4r2)() = / M Pias(s) + zx(o)lds + e [ MDar(s) + ea(o)lds, (@
(Azz)(t) =eAa_it1 /(; e’\"[/\:cg(s) + f(s,z1,T21)]ds+
e~ /: e’\“’[/\zzg(s) + f(s,21,Tz1))ds, (7)
where A > 0 is arbitrarily given constant.
Defining a = { ‘f i Z i (2) . Let us impose the following hypotheses on the function

f:
(H ) (i) There exist up and vy € C?(J, E) such that up < vy and ufy < f(¢,uo, Tug) —
Yug, Vo = F(t,v0,Tv0) + Yuy, where vy, 74, staisfy respectively that

0 . if uy(0) 3§ ug(a), uy(0) < yj(a),
Tuo = 4 (HEE2 4+ 5 )(ug(0) — uo(a)) + (u4(0) - w(a))]
if up(0) > uo(a),uy(0) > uy(a),

0 if ’Uu( ) > 'U(J( ) 'UO(O) > 'UO( )
Yoo = (MEE2 4 MR )[(0(0) - vo(a)) + (v(0) — vj(a))]
i 06(0) < vo(a), 15(0) < vj(a),
with M > 0,N > 0.
(ii) There exist up and vy € C*(J, E) such that vo < up and ug§ < f(¢,uo, Tug) — ¥,
vy > f(t,vo,Tvo) + 7,,, wWhere 7,,,,7,, satisfy respectively that

0 if ug(0) < uu(a)q, u{,(O)ag ug(a),
(MloZtAL 1 NSRS (4 (0) — wo(a)) + (w§(0) - (a))]
if uy(0) > ug(a), u;(0) > uj(a),

0 if vy(0) > vy(a), v4(0) > uy(a),

Top = § (MleztH2 | NSoaztPANSw (5 (0) — wg(a)) + (vh(0) - v(a))]
if v(0) < vy(a),v(0) < vy(a),

To =

with M >0,N > 0.
(Hz) (i) f{t,u,v) — f(t,8,9) > ~M(u— )~ N(v—-19) for up < i < u<v,Tyy <
v < v < Tw;
(i) f(t,u,v)-f(t,%,9) < M(u—a)+N(v-3)forvg <4 <u < up,Tvo <% < v < Tup.
(H3) Assume M > 0, N > 0 satisfy (4), and there exists a constant L > 0 such that

by = La N NSya®el* (L + M)a? <1,
1—eLla ' L(1-e-La) " (1-e-La)2
_(L+ M)a | NSyaele
e —— T — 1+l <L
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Take ug,vo € E with uy < vy, we call [ug,vo) = {z € E : ug < z < v} an ordered
interval of E.

3. Main Results

Now, we give the following two existence theorems, which are main results of this
paper.

Theorem 1 Let cone P be regular. Assume that (Hy) (i), (Hz) (i) and (H3) hold,

then, there exists monotone sequences {u,}>2,,{v,,}3%, which converge in C'(J, E) to

the minimal and maximal solutions z,y of PBVP(1) in [ug, vo).

Theorem 2 Let cone P be regular. Assume that (Hy) (ii), (Hy) (ii) and (H3) hold,
then, there exists monotone sequences {u, }%,{vn}3%,; which converge in C*(J, E) to

the minimal and maximal solutions z,y of PBVP(1) in [vg, ug].
We shall prove Theorem 2, because the proof of Theorem 1 is similar.

The proof of Theorem 2 (I) For any w € [vg, up)], consider the PBVP for the linear
integro-differential equation

v = Mu+4+ NTu + 2(t),u(0) = u(a),v'(0) = v'(a) (8)

where z(t) = f(t,w(t),(Tw)(t)) - Mw(t) — N(Tw)(t). We shall show that there exists a
unique solution of PBVP(8), for each w € [vy, ug]. From Lemma 3 it follows that PBVP(8)
is equivalent to the following operator equation:

u = A2 S Ap = efa—_tl /U el?[Lu'(s) + Mu(s) + N(T)(s) + z(s)lds+
e /ut P [Lp/(s) + Mu(s) + N(Th)(s) + 2(s))ds, 9)
1(0) = nu(a),

where Z = (u, u'), L is given by (H3). It is easy to see that (9) is equivalent to the following
equation: u(t) = (Su)(t) where the operator S is defined by

e

(510 = o [ e IAn(s) + Lu(lds + = [ HI(Auts) + Lus)lds. (10

Therefore

(Su)'(t) = (Ap)(t) + Lu(t) — L(Su)(t) (11)
Defining a norm || - || of C(J, E) such that |[u|| = maxy |u(t)e™|,|-||; of C*(J, E) such
that |jul|; = max{|jul|,||«'||}, we show that § is a contraction in C*(J, E). In fact, for any
v and u' € C*(J, E), we have B
1 ~ ] = max [(Ap)(1) ~ (AR)(E))e™
1 a
S gl [ B (B (s) + Muls) + N(Tw)(s) - L (s)ME(s) — N(TE)(s))dsl+

max | [ e(Lu () + Mu(s) + N(Tw)(s) = Lif(s) = MR(s) - N(TR)(s)ldsl
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eLa a -
o1 | F W) = B + Mlils) = B(s)] + IN(Tw)(s) - (TTa(s)l}ds

IA

a La CLa a .
< B0 i + o1 [ Ko, 6)06) - e agla)
(L+ M)a

NS() @ L 2 L
<M T = e ] -L¢ 5T
< TR -l + oo [ eF) [ e Haeldslu - gl

L+ M)a NSyaek .
<[t Ma | Nooae Ry, g,

La
Let b3 = %"Qﬂ& + EQEL—, then,

1S~ ST = max|[(S)(t) ~ (SE(B]e™
Szl [P R)S) + Lits) ~ (AR)(s) ~ L(s)ldsl
max| [ {(Au)(s) + Lu(s) ~ (AR)(s) ~ L))
<o [ U - FRo)e ] + Elu(e) - )]s
<oy | Uk = ARl + Ll - mlds

abs La
<_9bs Lo
ST mallt =~ A+ sz lle — Elh

=bi|lu - Elh-

From (11) we have

I(Sw)' — SEY|l < 1 Ap — ARl + Lilp - Bl + L|| Sk — SH||
<bhifle = FEllh + e = Elly + Lby || — El
= bollu — 7l

By assumption (Hj), it follows that b; < 1 and b; < 1. Therefore, ||Su — S@|); <
|| —Z|l1, i-e. S is a contraction. By virtue of Banach’s fixed point theorem, there exists a
unique fixed point u € C(J, E) of § such that u is a unique solution of PBVP(8) for each
w € [vg, uo).

(II) We define a mapping Bw = u for any w € [vg, ug), where u is the unique solution
of PBVP(8) relative to the w. We show that

(1°) vy < By and up > Buy;

(2°) B possesses a monotone nondecreasing property on the segment [vy, ug], that is,
if z,w € [vp,up] with w < z then Bw < Bz.

In order to prove (1°), let v; = Buvy and p = vy — vy, then p(0) — p(a) = vy(0) —
v(a),p'(0) — p'(a) = v5(0) — wy(a), and

p'(t) = v (t) = vi(t) > f(t,v0,Tv) +7,, — Mv1 — NTvy + Mvg — NTvg — f(t,v0, Tv0)
= Mp(t) - N(Tp)(t) + 7,
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where

oy if p(0) < p(a) and p/(0) < p'(a),
with @, as in Lemma 2. By means of Lemma 2 and the assumption (Hs) we get p(t) < 0
on J, therefore, vg < Bug. Similarly, we can prove that uy > Bug.

In order to show (2°), let w, z € [vy, uy] with w < z, set n = Bw,up = Bz,p=1n—p.
By assumption (H;)(ii), it follows that

p(t) =n"(t) ~ v'(t) = f(t,w,Tw) + Mn(t) + N(Tn)(t) - Mw(t) - N(Tw)(t)-
f(t,2,Tz) = Mu(t) - N(Tu)(t) + Mz(t) + N(Tz)(¢)
>Mp(t) - N(Tp)(t)

obviously, p(0) = p(a),p'(0) = p’(a). In view of Lemma 2, it implies that p(t) < 0 on J,
that is, Bw < Bz.

(IIT) Defining the sequences {u,}3%,, {v,}32
From (II) just proved, we get

- = { 0 if p(0) > p(a) and p'(0) > p'(a),

1 with u,, = Bu,,v, = Bu,(n=1,2,--).

n=

Y<vp S Su S Sy oo Sup S . (12)
On account of the definition of u,, and (9), (10), we have

A ¢
un(t) = s /0 eL* (Auy(s) + Lun(s))ds + e~ /0 e [Aun(s) + Lun(s)]ds  (13)

e—Lt

i (t) = (Fun)() =

et /0 eX*[Luy,(s) + Mun(s) + N(Tun)(s) + zaa(s)lds,  (14)

- /Ua el*[Lul (s) + Mun(s) + N(Tun)(s) + za—1(s)]ds+

where
zaca(8) = (8 wca(8), (Pt )(6)) = Mo (8) = N(Ttn-1)(2). (15)
Similar to the proof of (I}, we can get

flunsi ~ “n“ < by llungs = ualli+

La_ '_/ e[ ’i“l/ "(zn4i-1(7) = zp-1(7))d7+
C_L _/; 5 (zagiz1(T) = zao1(7))dr)ds|+

t e—LS a 8
[ el [ e nsina(n) = s (m)dr + €5 [T (znsia(7) - znma(r))drldsl}

2eLa
< bl""n+: un"l + (—'—__“—5;||2u+z 1 Zn—lﬂ,

llurgs = :z“ < ballunsr = unlli+

max{ | [ eMlansina(s) = znr (ool + [ eHlzyinas) = znls)lds])

aeLa
< b2”un+i - un”l + e__'ﬁ_'—.l“zn+i—1 - Zn~1||-
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Let b = max{b;,b;},a" = max{;’i‘—,il)—, ge™t ~}, then the assumption (Hj) implies b* < 1.
Therefore, from the above two inequalities it follows that

*

a .
“un+1 - un“ S 1__—z:|]zn+i—l - zn—l” (n,z = 112) ° ')' (16)

Since the regularity of P leads to the normality of P, we see from (12) that {u,}32,
is a bounded set in C(J,E). Let B, = {z € E : || < r},f € C(J X E x E, E) implies
that f is bounded on J x B, x B,. So by (15), there exists a constant ¢ > 0 such that
lza-1l) S e(n =1,2,--).

From (13), (14) and (15), it follows that {u,, }2, is equicontinuous on J. On the other
hand, in view of the regularity of P and (12), we get that u,(t) — z(t) fort € J,n — o0
and some z € C(J,E). Applying the Acoli-Arzela theorem, we obtain that {u,}%2,
converge uniformly and monotonically to z(t) on J, that is,

l[un = 2] = 0 (n = o0). (17)
From (15) and (17), we find
lzn-1 =2l = 0 (n — o), (18)
where
z(t) = f(t,2(t), T2(t)) — M=z(t) — N(Tz)(t). (19)

Now, from (16),(17), it follows that {u,}52, is convergent on C!(J, E), and hence, (17)
implies that z € C*(J, E) and

s — 2l = 0 (n = co). (20)

Observing (18), (19) and (20) and taking limits in (13) and (14), respectively, we have

e—Lt a t
2(t) = -7 1/ eL’[L:c(s)+ P()ds + e [ e (La(s) +2/(s)ds,

"[La'(s) + f(s,2(s), (Tz)(s))]ds+

z'(t) =(4z)(t)

1
e~ Lt /U eL”[L:c’(s) + f(s,2(s), (Tz)(s)))ds.

This implies by virtue of Lemma 3 that z is a solution of PBVP(1).
In the same way, we can find y € C*(J, E) such that ||v, — y|l1 = O(n — o0), and y is
a solution of PBVP(1).

(IV) Finally, we show that z,y are minimal and maximal solutions in [vo,uo] for
PBVP(1). To this end, assume that u € [vy, 1] is any solution of PBVP(1) and v,_1(t) <
u(t) < u,_1(t) for t € J, let p(t) = u(t) — u,(t), by (Hz)(ii) we get
p" =" —u! = f(t,u,Tu) - Mu, — N(Tu,) — f(t,un-1,Ttu-1) + Mty—1 + N(Tup_1)

>Mu—up_1)+ N(Tu—-Tu,-1) + M(un—1 — un) + N(Tup-1 — Tuy,)

= M((v—-u,)+ N(Tu—-Tu,) = Mp+ NTp,
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and p(0) = p(a),p'(0) = p'(a). Then p(t) < 0 on J because of Lemma 2, ie., u < u,. In
the same way, we can show that v,, < u. Hence, by induction, we have that v, < u < u,
for n = 1,2,---. Let n go to infinity, we have y < u < z. The proof of Theorem 2 is
completed.

Remark The condition that P is regular can be omitted if E is weakly sequentially
complete and P is normal.
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