BMO Boundedness of Generalized Littlewood-Paley Functions *

LI Wen-ming

(Dept. of Math., Hebei Normal University, Shijiazhuang 050016, China)

Abstract: It is proved that the image of a BMO function under the generalized Littlewood-Paley functions is either equal to infinity almost everywhere or in BMO.

Key words: Littlewood-Paley function; BMO.

Classification: AMS(2000) 42B25/CLC O174.3

Document code: A Article ID: 1000-341X(2002)04-0515-04

For $x \in \mathbb{R}^n$ and t > 0, the Poission kernel for the upper halfphane, \mathbb{R}^{n+1}_+ , is

$$P(x,t) = c_n \frac{t}{(t^2 + |x|^2)^{\frac{n+1}{2}}},$$

the Poission integral of $f(x) \in L^1_{loc}(\mathbb{R}^n)$ is

$$f(x,t) = [f * P(\cdot,t)](x) = \int_{\mathbb{R}^n} P(x-y,t)f(y)dy$$

and the gradient of f(x, y) is

$$\nabla f(x,t) = (\frac{\partial f}{\partial x_1}(x,t), \cdots, \frac{\partial f}{\partial x_n}(x,t), \frac{\partial f}{\partial t}(x,t)).$$

The Littlewood-Paley function g(f) is defined by

$$g(f) = (\int_0^\infty t |\nabla f(x,t)|^2 \mathrm{d}t)^{\frac{1}{2}}.$$

Wang^[1] prove that for $f \in BMO(\mathbb{R}^n)$, either $g(f)(x) = \infty$ almost everywhere or $g(f)(x) < \infty$ almost everywhere and there is a constant C depending only on n such that

$$||g(f)||_* \leq C||f||_*,$$

Biography: LI Wen-ming (1963-), male, Ph.D., Associate Professor.

^{*}Received date: 2000-01-17

where $\|\cdot\|_*$ is the norm in BMO. In this note, we will generalize this result to a more general case.

Let $\psi(x)$ is function defined on \mathbb{R}^n , for $\beta > 0$ and $\gamma > 0$, satisfying

- $(1) |\psi(x)| \leq \frac{C}{(1+|x|)^{n+\gamma}}, x \in \mathbb{R}^n$
- (2) for any $x, y \in \mathbb{R}^n, |x y| \le \frac{1}{2}(1 + |x|),$

$$|\psi(x)-\psi(y)|\leq C(\frac{|x-y|}{1+|x|})^{\beta}\frac{1}{(1+|x|)^{n+\gamma}},$$

(3) $\int_{\mathbb{R}^n} \psi(x) \mathrm{d}x = 0.$

We define the generalized Littlewood-Paley function by

$$G(f)(x) = (\int_0^\infty |f * \psi_t(x)|^2 \frac{\mathrm{d}t}{t})^{\frac{1}{2}},$$

where $f(x) \in L^1_{\mathrm{loc}}(R^n), \, \psi_t(x) = \frac{1}{t^n} \psi(\frac{x}{t}).$

Lemma 1 Let $f \in BMO(\mathbb{R}^n)$, $\gamma > 0$ and $p \ge 1$, let Q be a cube centered at x and have edge length r. There is a constant C depending on n, γ and p so that for t > 0

$$(\int_{R^n} \frac{|f(y) - f_Q|^p}{(|y - x| + t)^{n + \gamma}} \mathrm{d}y)^{\frac{1}{p}} \le Ct^{-\frac{\gamma}{p}} (1 + |\ln[\frac{t}{r}]|) ||f||_*.$$

The proof of this Lemma is similar to the Lemma 1.1 in [2]. The following is our main result.

Theorem 2 Let $f \in BMO(\mathbb{R}^n)$. Either $G(f)(x) = \infty$ almost everywhere or $G(f)(x) < \infty$ almost everywhere and there is a constant C depending only on n such that

$$||G(f)||_* \leq C||f||_*.$$

Proof Suppose $G(f)(x) \neq \infty$ almost everywhere. The $E = \{x : G(f)(x) < \infty\}$ has positive measure. Let \bar{x} be a point of density of E, and Q be any cube centered at \bar{x} and set $f_Q = \frac{1}{|Q|} \int_Q f(t) dt$. Write f as

$$f(x) = f_Q + [f(x) - f_Q]\chi_Q(x) + [f(x) - f_Q]\chi_{Q^c}(x) = f_Q + g_Q(x) + h_Q(x),$$

where Q^c denote the complement of Q. Since f_Q is a constant, $G(f_Q)$ is identically 0. Thus $G(f_Q)$ is in BMO with BMO norm equal to 0. Therefore,

$$G(f) \leq G(g_Q) + G(h_Q)$$

and

$$G(h_Q) \leq G(f) + G(g_Q).$$

Since $f \in BMO(\mathbb{R}^n)$, we have

$$\|g_Q\|_2 = (\int_Q |f(t) - f_Q|^2 \mathrm{d}t)^{rac{1}{2}} \leq C |Q|^{rac{1}{2}} \|f\|_*$$

and $g_Q \in L^2$. Thus, $G(g_Q)$ is finite almost everywhere. Therefore, $G(f)(x) < \infty$ at almost every point such that $G(h_Q)(x) < \infty$.

Let d < 1. Since \bar{x} is a point of density of E and $G(g_Q)$ is finite almost everywhere, there is a point x' in dQ such that G(f)(x'), $G(g_Q)(x')$ and $G(h_Q)(x')$ are finite.

In the following Lemma 3 we will prove that for a sufficiently small d, there is a constant C so that for all $x \in dQ$,

- (i) $G(h_Q)(x') < \infty \Rightarrow G(h_Q)(x) < \infty$,
- (ii) $|G(h_Q)(x) G(h_Q(x'))| \le C||f||_*$.

Now we assume that (i) and (ii) are true. Fix a cube Q centered at \bar{x} . As above, there is an $x' \in dQ$ so that $G(h_Q)(x') < \infty$. By (i), $G(h_Q)(x)$ and G(f)(x) is finite almost everywhere in dQ. Considering only cubes centered at \bar{x} with edge length equal to a positive integer shows G(f) is finite almost everywhere.

Now we prove that $||G(f)||_* \leq C||f||_*$. Let Q' be any cube and set $Q = \frac{1}{d}Q'$. Choose a point $x' \in dQ$ so that $G(h_Q)(x')$ is finite. Then by (i) and (ii),

$$egin{aligned} &rac{1}{|Q'|}\int_{Q'}|G(f)(x)-G(h_Q)(x')|\mathrm{d}x\ &=rac{1}{|Q'|}\int_{Q'}|G(g_Q+h_Q)(x)-G(h_Q)(x)+G(h_Q)(x)-G(h_Q)(x')|\mathrm{d}x\ &\leqrac{1}{|Q'|}\int_{Q'}|G(g_Q)(x)|\mathrm{d}x+rac{1}{|Q'|}\int_{Q'}|G(h_Q)(x)-G(h_Q)(x')|\mathrm{d}x\leq C\|f\|_*. \end{aligned}$$

So $||G(f)||_* \le C||f||_*$, the proof is complete.

Lemma 3 Suppose $f \in BMO(\mathbb{R}^n)$. Let Q be a cube with center \bar{x} and edge length r. Set $d = \frac{1}{8\sqrt{n}}$. Suppose there is an $x' \in dQ$ so that $G(h_Q)(x') < \infty$. Then there is a constant C, depending only on n, such that

$$G(h_Q)(x) < \infty$$

and

$$|G(h_Q)(x)-G(h_Q)(x')|\leq C||f||_*$$
 for all $x\in dQ$.

The proof of lemma 3 is simple, the readers can refer to [2]. At last, we define the generalized area integral by

$$S(f)(x)=(\int\int_{\Gamma(x)}|f*\psi_t(y)|^2rac{\mathrm{d}y\mathrm{d}t}{t^{n+1}})^{rac{1}{2}},$$

where $\Gamma(x) = \{(y,t) \in (R^n,(0,\infty)) : |x-y| < t, t > 0\}$ and for $\lambda > 0$, we define other Littlewood-Paley g-function as

$$g_{\lambda}(f)(x)=\int_0^{\infty}\int_{R^n}(\frac{t}{t+|y-x|})^{n\lambda}|\psi_t*f(y)|^2\frac{\mathrm{d}y\mathrm{d}t}{t^{n+1}})^{\frac{1}{2}}.$$

Then we can use the similar method to get the same results for S(f) and $g_{\lambda}(f)$, the details are omited. The readers can refer to [2].

References:

- [1] WANG S L. Some properties of Littlewood-Paley's g-functions [J]. Scientia Sinica A, 1985, 28: 252-262.
- [2] KURTZ D S. Littlewood-Paley operators on BMO [J]. Proc. Amer. Math. Soc., 1987, 99(4): 657-666.
- [3] DENG D G, HAN Y S. The H^p Theory [M]. Beijing: Beijing University Press, 1992, 16-21.

广义 Littlewood-Paley 函数的 BMO 有界性

李文明

(河北师范大学数信学院, 河北 石家庄 050016)

摘 要: 本文证明了 BMO 函数在广义 Littlewood-Paley 函数下的象或者几乎处处等于无穷或者属于 BMO.