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Abstract: A Boolean function f(z1,22,-:-,2,) is said to be elusive, if every decision
tree algorithm computing f must examine all n variables in the worst case. In 1988,
A.C.C. Yao introduced a question: Is any nontrivial monotone Boolean function that is
invariant under the transitive act of group C,,, x C, elusive? The positive answer to this
question supports the famous Rivest-Vuillemin conjecture on decision tree complexity.
In this paper, we shall partly answer this question.
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1. Introduction

It is well known that a tree is a connected graph without cycle. A rooted tree is a
tree with a special vertex named root. Let T be a tree, when every edge of T is given
a direction, we get a directed tree. In a directed tree, for any vertex V, the number of
directed edges into V is called indegree of V, and the number of directed edges out of V
is called outdegree of V.

A rooted binary tree T is a directed tree in which the indegree of the root vertex is 0
and the indegree of other vertices is 1, and the outdegree of any vertex is either 2 or 0.
The vertices whose outdegree is 0 are called leaves of T. If directed edge (z,y) € T, then
z is called father of y, and y is called a child of z. Clearly, in a rooted binary tree, each
vertex has two children but any leaf has no child.

A Boolean function is a function whose variable values and function value all are in
{0,1}. In general, Boolean function is represented by Boolean operations: conjunction A,
disjunction V and negation —. For example,

f(z,y) = (mz) A y) V(2 A ().
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For simplicity, we usually write 2y for z Ay, 2 + y for 2 V y and Z for -2. So, above
Boolean function can be written as

f(:c,y) =zy+zy.

An assignment for a Boolean function is a mapping from its variables to {0,1}, each
variable gets exactly one value from an assignment. For a Boolean function of n variables,
an assignment can be seen as a binary string of length n, i.e., a string in {0,1}". An
assignment z of Boolean function f(z) is called a truth-assignment if f(z) = 1, and
false-assignment if f(z) = 0. We denote by truth(z) and false(z) respectively the sets of
variables taking value 1 and taking value 0 in the assignment z.

For two assignments of a Boolean function f(z1,z3,--,2,), say, ¢ = (21,22, -+, 2Zn)
and ¥ = (y1,Y2, ", ¥n), if 2; < y; for all 7, then we write z < y. A Boolean function f(z)
is increasing if f(z¢) = 1 and ¢ < y imply f(y) = 1, decreasing if f(y) = 1 and z < y imply
f(z) = 1, monotone if it is either increasing or decreasing. f(z) is nontrivial if it is not a
constant function.

A Boolean function f can also be represented by a rooted binary tree that is so-called
decision tree of f. A decision tree of a Boolean function f is a rooted binary tree, whose
non-leaf vertices are labeled by its variables, and leaves are labeled by 0 and 1. Edges of
this binary tree are also labeled by 0 and 1 such that edges from a non-leaf vertex to its
two children are labeled by 0 and 1 respectively, and any variable appears at most once
in a path from the root to any leaf. Given an assignment to the variables of a Boolean
function, we can compute the function value by its decision tree as follows: starting from
the root, we look at its label. If its label is z;, then we make a decision according to the
value of z; to decide where we go. If z; = 0, then we go to the next vertex along the edge
with label 0; if z; = 1, then we go to the next vertex along the edge with label 1. Once
a leaf is reached, the function value for the given assignment is obtained. For example, a
decision tree of f(z1,22) = z123 + Z2&3 is as follows:

A path is marked in the decision tree for computing f(1,1,0). Since the leaf is labeled
by 0, we have f(1,1,0) = 0.

The decision tree representation of Boolean function is very useful in computer science.
In fact, a decision tree of f gives a procedure (or say, algorithm) to compute the function
value. The computation time depends on the length of path that is the number of variables
on the path. The depth of a decision tree is the maximum length of all paths from root
to leaves. Actually, the depth of a decision tree is exactly the number of queries that the
algorithm must make for computing f in the worst case. In other words, the depth of a
decision tree shows the computational complexity of the decision tree algorithm.
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A Boolean function f may have a lot of decision trees. We denote by D(f) the minimum
depth of all decision trees for computing f. D(f) is called the decision tree complexity of
f. Clearly, D(f) < n when f has n variables. If D(f) = n, then f is said to be elusive.

It is known that decision tree complexity as an important measure of complexity is
closely related to several other combinatorial and complexity measures, e.g., it is related
to the certificate complexity (see [1]), to the block sensitivity ([2]), and to the packing of
graphs ([3]). Furthermore, its logarithm is equal, up to a constant factor, to the time to
compute f on a CREW PRAM ({2]).

A group G of permutations on {1,2, - - ,;n} is called transitiveif for any ¢,j € {1,2,---,n},
there exists ¢ € G such that o(i) = j. Let f(z1,22,--,2z,) be a Boolean function and G
be a group of permutations on {1,2,---,n}.f(z1,22,---,2,) is said to be invariant under
group G if for any o € G,

f(zl’ T2, ',an) = f(xo(l)vza(Z)v T a:co(n))'

A Boolean function f(zq,22, - -,2,) is said to be weakly symumetric if there exists a
transitive permutation group G on {1,2,---,n} such that f(zi,z2,---,2s) is invariant
under G.

In last twenty years, many researchers have paid their efforts to decision tree complexity
of Boolean function({3]~([13]). Especially, the following conjecture is one of focuses on
which people concerned.

Rivest-Vuillemin Conjecture Every nontrivial monotone weakly symmetric Boolean
function is elusive.

Authors of [10] proved that Rivest-Vuillemin Conjecture is true when n is a prime
power. In general case, this conjecture is still open. In [12] A.C.C. Yao showed that
any nontrivial monotone Boolean function which is invariant under the transitive act of
cyclic group C,, must be elusive, and queried whether the analogous result is true for
Boolean function which is invariant under the tramsitive act of group C,, x C,. This
question is called Yao’s question. Obviously, tlie positive answer to this question partly
supports Rivest-Vuillemin Conjecture. In this paper, we make a discussion to decision
tree complexity of Boolean function, mainly around Yao’s question.

2. Preliminary

An abstract complex A on a finite set X is a family of subsets of X, such that if 4
is a member of A, so is every subset of A. Each member of abstract complex A is called
a face of A. A maximal face of abstract complex A is a face that is not contained by
another face. A free face is a non-maximal face that is contained by only one maximal
face. An elementary collapse is an operation that deletes a free face together with all faces
containing it. An abstract complex A is collapsible if it can be elementarily collapsed to
the empty abstract complex.

The complex Ay of monotone Boolean function f(z,zs,---,%,) is an abstract complex
that is defined as follows:

if f(z) is monotone increasing, then Ay = {false(z)|f(z) = 1};
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if f(z) is monotone decreasing, then Ay = {truth(z)|f(z) = 1}.

Since f is monotone, every subset of face A of Ay is still in Ay. Hence, abstract
complex Ay is well defined. Each vertex of Ay is a variable of f .
The Euler characteristic of an abstract complex A is defined by

xB)= ¥ (DA = Y (-1t

A€A A#$ AeA

In particular, x(¢) = 1 and x({¢}) = 0.

A permutation o on the vertex set of abstract complex A is called an automorphism
of A if for any face A of A, o(A) = {o(a)la € A} is still a face of A. Let G be a group
of automorphisms on A, an orbit of G is a minimal subset of vertices of A such that G
takes no vertex out of it. It is obvious that G has only one orbit on A if and only if G is
transitive on vertices of A.

Denote

A® = {{Hy,---,H,}|Hy,-- -, Hy are orbits of G, and HyU---U Hy, € A} U {¢}.

Clearly, A€ is also an abstract complex.

For an abelian group G (here either Z or Z,, pis a prime), we may consider the
homology groups with coefficients in G. Say a complex A is G-acyclic if the homology
groups of A are

Ho(A,G)=G, Hi(A,G)=0, i>0,

where H;(A, G) denotes the i-dimensional homology group of A with respect to G.
3. Main results

The following lemmas set up a bridge between algebraic topology and elusiveness.
Lemma 17 Every collapsible abstract complex is Z,-acyclic.
Lemma 27 If A; is not collapsible, then f is elusive.

Lemma 30140151  Assume that G is a group of automorphisms on the finite Zy-acyclic
complex A. If there exists a normal subgroup Gy of G such that |G;| = p* (p is a prime
and kis a positive integer) and the quotient group G/G; is cyclic, then x(A%) = 1.

Lemma 4 Let f(z;,23, - -,%,) be a nontrivial monotone Boolean function, and G be a
group of automorphisms on Ay. If there exists a normal subgroup Gy of G such that (1)
|G1| = p* (p is a prime and k is a positive integer), (2) the quotient group G/G is cyclic,
and (3) x(A?) # 1, then f is elusive.

Proof Suppose to the contrary that f(z1,z2,---,2,) is not elusive. By Lemma 1 and
Lemma 2, Ay is Z,-acyclic. By Lemma 3, this result, combining the conditions of lemma,
implies that x(A?) = 1, which contradicts the assumption of current lemma. O
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Suppose that f(z1,22,-+,2,) is a nontrivial monotone Boolean function, and n =
n; - ny. Label all variables by elements in Z,,, x Z,,, say,

(313321"' 1311) = (211)"'azlnszla'"aZan»"')znlly"' az'nlng)-

Denote by G,,, and Gy, respectively a group of permutations on {1,2,---,n;} and {1,2,- - ,n3}
Gy, X Gy, is the direct product of G, and G, acting on Z,, X Z,,. For any (o,7) €
Grn, X Gn, and any (4,7) € Zn, X Zn,,

(o, 7)(5,5) = (a(2),7(5))-

Clearly, G,,, X G,,, naturally induces a group of permutations on the variables of

f(mu,...,zlnz,zm,...,22n2’...,zml,...,znlnz)_
f(z1,22, -+, 2,)is said to be invariant under G, X Gy, if
FZ11, ) Zimys @21, Zomgy g1y s Ty )
= f(Zo)yr(1)r 5 Zo(1)r(n2)r To(@)r(1)s " 1 Za(2)ring)s " r Balmy)r(1)s " " Ea(ny)r(n2))
for all (0,7) € Gn, X Gp,.

Lemma 5 If f(xy,22,---,2,) is invariant under G,,, X G, then G,, X G, induces a
group of automorphisms on Ay,

Proof Without loss of generality, suppose that f(z1,z2,--,2,) is decreasing. For any
(0,7) € Gy, X Gp,, we are going to show that (o,7) is an automorphism of complex

As = {truth(2)|f(z) = 1}.

Take arbitrarily a face A = {z;;,, -+, i,;,} of Ay. Assume the assignment corresponding
to this face is (@11, @12, "+, @nn,y ), 1€,

flair, @12, ann,) =1

and
truth(an, ayz, - $an|ﬂ2) = A.

Notice that
f(a'a'*' (1)r=1(1) Bo=1(1)7=1(2)» " " » Qo= (m, )r‘l(nz)) =1

since f(zy, %2, --,2,) is invariant under G,, x G, and
-1 _—1
(67, 77") € Gp, X G,
Moreover,

(0, 7)A) = {Zo(i)r(51)> 1 Totin)rin) ) = {Za(i)r() |25 € A}
= {2o(i)yr()laij = 1} = {zijlag-1)r-1(5) = 1}

= truth(a,,_j(l)f_n(l), Qp—1(1)r=1(2)»" " "> ao—l(nl).,.—l(nz)).
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Hence (o,7)(A) is still a face of A; corresponding to assignment

(@g-t(2)r=10)2 "2 8o =1 )1 ma))-

This shows that (o, 7) is indeed an automorphism of Ay. The analogous deduction can be
done when f(z,,23,--,2,) is increasing. O
Now we can prove the following main theorem.

Theorem 1 Let f(z1,23,--,2,) be a nontrivial monotone Boolean function, and n =
ny -ny. If fis transitively invariant under group G, X G,,, where G, and Gy, are defined
as above, |G, | is equal to a power of prime and G,,, is cyclic. Then f(z1,z2,---,2,) is
elusive.

Proof Label all variables of f(zy,z2,:--,%,) by elements in Z,, x Z,,, and G,, X Gy,
acts on the variables as before. Denote G = Gy, X Gp,. It is already shown in Lemma 5
that G is a group of automorphisms on Ay. It can be further checked that G,,, X G, has
the following properties:

(1) Let Gy = {(o,1)|e € G,,}. Then G, is a normal subgroup of G since for any
(0,1) € Gy and (o1, 7) € G,

(01,1'1)(0,1)(01,71)_1 = (01001_1,1) € Gy

(2) The quotient group G/G; is cyclic since G/Gy ¥ (Gn, X Gn,)/Gn, = Gp, and
G, is cyclic.

(3) |G,lis a power of prime, and G is transitive on Z,, X Z,,, by the assumptions of
this theorem.

Besides, since G is transitive on Z,,, X Z,,, G has only one orbit on Z,, X Z,,,. But the
monotonicity and nontrivicity of f imply that the only orbit is not in Ay. Thus A? = {¢}.
This turns out x(A?) = 0. By Lemma 4 , above results lead to the conclusion of current
theorem. O

Corollary 1 Let f(z1,23,---,2,) be a nontrivial monotone Boolean function, n = ny -
ny. If f(z1,22,---,2,) is transitively invariant under the direct product Gn, X G,, of
permutation groups G,, and G,,, where G,, is a cyclic group of prime power order on
{1,2,---,m}, and Gy, is a cyclic group on {1,2,---,n,} , then fis elusive.

Proof It is an immediate result of Theorem 1. O
It is clearly that Corollary 1 partly answers the question of A. C-C. Yao.
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