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Abstract: In this paper, Jabotinsky matrices in [4, 5] are modified and a type of
infinite lower triangular matrices T(f) is discussed. Some algebraic properties of T'(f)
are obtained and proved. Additionally, some inverse pairs and combinatorial identities
associated with derivatives are obtained.
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0. Introduction

In [4, 5], Jabotinsky introduced a special kind of infinite lower matrices. In (3], J.L.
Lavoie and R. Tremblay studied the inversions of formal power series and the related
results in terms of the Jabotinsky matrices. In this paper, we combine the work of [1-7]
to modify the Jabotinsky matrices and obtain some new identities and inverse relations
related to derivatives.

1. The modified Jabotinsky matrix

Let F(t) = 3220 qit* € L(F) with g = ¢ # 0, be a given formal power series(fps). The
set L(F) is the totality of fps with coefficients ¢; € F, a field of characteristic zero. Let
f(t) = tF(t). Then an infinite lower triangular matrix L called the modified Jabotinsky
matrix of f(t) is defined as follows:

Lo
i Lo Ly =(Li), > 7,4, =0,1,---,
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where L;; are generated by fi(t) = = Lt j=0,1,2,---, and from Taylor's theorem,
L = (,._1]. i DU Fi(t) |;=0, i > j, with D = 4. Clearly, if F(t) = 1 then L = I, where I
is a unit matrix of infinite order.

In this paper, we introduce a new notation T' = [T;;] to represent the infinite lower
triangular matrix T = (T3;), ¢ > 7, 4,5 = 0,1,2,--. So the modified Jabotinsky matrix of
f(t) can be denoted as L = [L;;].

2. Inverse pairs related to the modified Jabotinsky matrix

Let g(t) = tG(t) and let M = [M;;] be its modified Jabotinsky matrix. From (3.1) in
(3], we have

Theorem 2.1 Let A = (ag,a1,az,---)¥ and B = (bg, by, bs,---)7. If f(g(t)) = t = g(f(¢)),
then we have ML = I = LM and the corresponding inverse pair of matrix relations

A=1LB,
B=MA.

From Theorem 2.1, we obtain a number of inverse pairs of matrix relations in Table 1,
where L;;j, M;; can be obtained by the method in [3].

Table 1:

F(t) G(¢) Ly M;;

t 2 i—5( 7. YL (F-i-1
1tz 1+(1+4.rct)1Tr ’ (“J) ( . 2) 1-( i-1 )
(L+ezt)?  (1-=at)!  (—=)79(0)  #9(0))

m(1t+t) el-1 'Z:—.!Sl(i,j) ‘,:L.!Sz(iaj)

3

The S;(4,5) and S3(%,5) are the Stirling numbers of both kinds (see[2, 3]).

A= MB, A= M;B, . .
B = N4, and{ B = N4, be two inverse pairs. Then we have

the following inverse pair

Theorem 2.2 Let {

A= N;MB, (%)
B = NleA.
) A= MB, A= M,B, . . _
Proof. Since B = N, A, and { B = Ny A, are two inverse pairs, we have M1 Ny =

I, MoN, = I. Hence M{NyM;N, = I, and (Nle)—l = N1 M,.
This completes the proof. O
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Example 2.1 Consider the inverse pairs in Table 1

{ = [=9(;2,))B,
= [(~2) 7 4(F )4,

B = [$52(4,7)]A.
From(x), we have the following inverse pair
A= [55:(0,9))27(2 )18,
B =[(-=) ("I ES5:6,5)4. O
Clearly, we can obtain many new inverse pairs using (*).
3. Some algebraic properties of T(f)

From now on, let f(t), g(t) be two derivable functions of infinite order. We substitute

T = 2‘—(’1—%—)451 for L;; &(J%@ in the modified Jabotinsky matrices and obtain a kind

of infinite lower tnzmgula.r matrices, denoted by T'(f), as follows:

£(t)
2
Dre
2o p
() - o f(t) f(t) = [Tij],
P P B 0

pli=i) Dli—5) . ..
where Ty = S0 i > jij = 01,2, U T = 55 ey, i 2 4,4 =
0,1,2,--- in T(f), we write T(f) |¢=¢, for the corresponding matrix. Moreover, let T,,(f)
denote the matrix of order n with the first n rows and n columns in T(f).

Let
0
pn 0

and (p,:)m = PjPj+1Pj+2 " Pj+m-1- Then P™ = subdiagi-j:k[@l)my(]b)m:"']) where
subdiag;_j—[(P1)m, (P2)m, -] says that all elements in P™ are zero except for the ele-
ments (p1)m, (P2)m,- -, In mth subdiag. Let p; = p» = --- = 1. We obtain a series of
matrices Q™ = subdiag; ;_,[1,1,--].

From [7], we have Theorem 3.1.

Theorem 3.1 For any integer ¢ > 0, we have
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(1) Tal£)Talg) = Tulf9); (2) Talf) = Tul(F).

Theorem 3.2 T(f) = 3320 % D(L)f( )-
Proof T(f) =37 ouD(k)f( Jsubdiag;_;_,[1,1,--] = 332, D(k)f(t)- o
Theorem 3.3

(1) T(f+9) =T(f) + T(9); (2) T(fg) = T(/)T(9) = T(9)T({)-
Proof Here we only prove (2). From Theorem 3.2, we have

oo k
=3 % 9 DHI(#(1o(0)) = Z%Z@WWWMM

:’ © DO f() DY . pW o (k~1)
:ZZ f() (k—l)(tt):zp l{(t)ZQkD ‘ g(t)
1=0 k=l ) =0 ) k=1 :
=Z%wvusz“n—(ﬁm

=0 k!
=T(9)T(f). ©

Corollary 3.4

(1) T(af) = aT(f), where a is a real number,

(2) For any integer i > 0, T*(f) = T(f*),

(3) T(f? - g*) = T(f?) - T(9°) = T*(f) - T*(g) = (T(f) - T(9)NT(f) + T(9))
= T(f - g)T(1 +9),

(4) T(f2 +97) = T() + T(¢*) = T*(f) + T*(9),

(5) T(Tho () fig*™) = T((f+g)k) = Tk(f+y) (T(f)+T( )

= YL, (OTH(NT(9) = Tho () TUHT (),

(6) T((f-9)) = T(: Fo(=1)F i fighy = TH(f - 9) = (T(f) - T(g))* _
= Tho(-D O THATH(9) = Tha(-1) O T(T(e*),

(7) T(w(f(t))) = w(T(f)), where w(t) is a polynomial,

(8) T(1+§)=I+T(%).

4. Inverse pairs related to T(f)

For T(1) = I, from Theorem 3.3, we have

Theorem 4.1 If f(t)g(t) = 1, then we have inverse pair

A=T()8,
B =T(g)A.

Example 4.1 Let f(t) = (1 +t)%, where a # 0 is a real number, and g(t) = (1 +¢)7°.
Then we have the inverse pairs ’

{ A =T((1+1t)*)B,
B = T((l + t)—a)A,
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{A T((1+1)*) =0 B = [(;2 )] ’
B =T((1+8)7%) |0 A = [(-1)(**TI")]A. O

In Table 2, we show a number of other inverse pairs.

Table 2:

F]

J
-a

J)’

L { A =T(e*)B

B = T(e-4t)A4 ° and {

e f+a i
[[ u(“’“‘) |e=o0]B,

T;j(tcott) |¢=0) A.

) {A T((1-t)*)B,
| B=T((1-t)")4,
(t
7

t
&1) ) A
3 { tcott) and B

In Table 2, a is a real number, and

and

SRR
It

—1)"T 9i—it+2(gi-i+2 1 Bi_; .
lJ(’ca.nt)‘t \= (=1 (i—(j+2)! )Bi—j+2 i—j even,
i— 7 odd,
and (=4)'79Bi_;
-4y I B;_. P
T;j(tcott) |s=o= G- T oevem
0 i—j odd,
Byt

where B;, are Bernoulli numbers defined by é,—t_—l = Ynso 4

5. Combinatorial identities related to T,(f)

Let e,(0 < k < n) be the unit vector in R"**! and aslo let

D) | DONg(e) 1
2007 7 (n=-1)

ex(g) = ki(g(t), Dg(2),
Then we have
Lemma 5.1 For any integersi > 0 and 0 < k < n — 1, we have
ei1Ta(f)en(g) = DP(F(2)g(2)).
Proof

' _ () fi (k=J)
ehy1Ta(fen(9) = b1 Tul(f)erlg) = Z : J'J!c (t)k'D(k - f)(t)

i=0
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Theorem 5.2 Let I,(f) = diag(f(t),- -, f(t)). If k,1 are two positive integers and
k < 1—1, then we have Yl_o(—1)'~*() () D) (£i(t)g(t)) = 0.

Proof From Lemma 5.1, we have
!

14
Z(—l)"*(j.) £ ODO(Fe)g(0) = Y(-1) (’) FH O T en(s)

1=0

l 4
= e 2 (-1 (’) FOTAHel9) = el 2(-1)' (’) LT Ta(f)exls)

izo
= et (Ta(f) — In(f))er(g) = 0. O

Lemma 5.3 For any integer n > 1, we have (T,(f) = I.(f))* ! = M,(f), where M,(f)
is a matrix of order n, in which all elements are equal to zero except for (Mp(f))n1 =

RAEI0)) e

Theorem 5.4 For any integer n > 1, we have
n-1
—1-i (T~ 1 n—1—1 n— i n—
S -1y ( ,- )f i()DOD(F(1)g(1)) = (n ~ DD ) a().
i=0
The proofs of Lemma 5.3 and Theorem 5.4 are similar to the proofs of Lemma 4.3 and
Theorem 4.4 in [2].
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(1. WEMZMRXKEZSHNER, ILH #x 210016;

2. KEBTRENARFR, A7 KE 116024)

W ¥ BIET (4,5 PH) Jabotinsky FKE, BIFIEMT —RAF T=AEKET(f) &
—8EHR, &G, SHT S5 XHREXAMAGHEHSK.
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