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Abstract: In this paper, we discuss the existence of the solution and coupled minimal
and maximal quasi-solutions for nonlinear non-monotone operator equation z = A(z, z),
improved and generalized many relevant results.
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1. Introduction and preliminaries

In this paper, we discuss the solution of the following operator equation:
z = A(z,2) (1.1)

under the condition that “A(z,y) + Tz” is a mixed monotone operator.

Let (E, P) is an ordered Banach space, the norm in E x E is defined by ||(z,y)||ExE =
max{||z|],||y||},(z,y) € E x E, then E x E is a Banach space with || - |[gxg. Let P =
P x (= P). It is to easy that P is a cone in E x E, and P is a total order minihedral cone
(please see the definition in [3]) if P is a total minihedral cone.

DCE, A: Dx D — E, Ais called semi-continuous in the first variable if for any
fixed y € D and monotone sequence {z,.}, £, — = implies that A(z,,y) weakly converges
to A(z,y). Similarly, we can define the semi-continuity of A in the second variable.

Let L(E) be the space of linear operators on E and T € L(E). Define 7(T) =
inf{k > 0,a(T(B)) < ka(B),B C E is a bounded set}, where a is Kuratowski measure of
noncompactness. T is called positive operator if ¢ > 6 deduces T'z > 6.

2. Main results
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Theorem 2.1 Assume E is a real Banach space, P is a total order minihedral cone in
E. D =[ug,v) C E, A: D X D — E satisfies the following conditions:

(i) uo < A(uo,v0), A(vo,u0) < vo;

(ii) For any fixed ¢ € D, A(z,y) is decreasing with y;

(iii) There exists a bounded linear positive operator T : E — E such that for any
fixed y € D, we have A(z2,y) — A(z1,y) > —T(z2 — 21),u0 < 21 < 22 < vo;

(iv) There is A € (0,1] such that (A\I+T)~! € L(E) exists and (A\I+T)z > 6 = z € P.

Then Eq. (1.1) has coupled minimal and maximal quasi-solutions (%,v) € D x D.

Proof Set G(z,y) = (M + T)"'[AA(z,y) + Tz],z,y € D, then it follows from condition
(iv) that (A +T)~! is positive operator (see [1]), which together with condition (i) implies
that

Ug S G(uo,‘vo), G(’vo,’uo) S vo. (21)

By condition (ii)(iii), we can prove that G is a mixed monotone operator, which together
with (2.1) deduces G: Dx D — D
(I) Firstly, we shall show that operator equation

z =G(z,2) (2.2)

has at least one coupled quasi-solutions in D x D. Let R = {(z,y) € D x D| =2 <
G(z,y),G(y,z) < y}, then R # 0 since (ug,vo) € D. From Zorn's lemma we can conclude
that R contains a maximal element (2*,y*) € D x D, which satisfies

z* < G(z"y"), G(y",2") <y, (2.3)
from (2.3) and the mixed monotoneity of G we have
G(="y") < G((=",y"), (v7,27)),  G(y¥",2") 2 G((y"»27), (=7,97)), (2-4)
(2.4) implies that (G(z*,y*),G(y",2*)) € R, and by maximality of (z*,y*) we have
G(z",y") <z*, G(y",=*) >y, (2.5)

it follows from (2.4)(2.5) that z* = G(z*,y*), G(y*,z*) = y*, i.e., (z*,y*) are the coupled
quasi-solutions of operator equation (2.2).

(II) Secondly, we will show that Eq. (2.2) has coupled minimal and maximal quasi—
solutions in D x D. Set

F(G) = {(z,y) € D x D| (z,y) is the coupled quasi-solutions of Eq. (2.2)},

S = {[u,v] C E is order interval| u < G(u,v),G(v,u) < v, F(G) C [u,v] x [u,v]}.
Since D € S, S # 0, and by part (I) we know that F(G) # 0. Define partial order “ <"
in S as following: [uy,v1], [u2,v2) € S, [u1,v1] < [uz,vs] if and only if [uy,v1] C [uz,vs).
Suppose that {I, = [ua,va]] @ € A} (A is index set) is a completely ordered subset of
S, set Q1 = {ua|a € A}, Q2 = {va|la € A}, I = [¢,w], where ¢ and W are the minimal
upper bound and maximal lower bound of @, and @, respectively. It is easy to see
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that I is a lower bound of {I,|a € A} in §, it follows therefore from zorn’s lemma that
S contains minimal element [u,v] and [%,9] € F(G). From (4,7} € S we know that
F(G) C [w,7] x [w,"), i.e., (u,v) are the coupled minimal and maximal quasi-solutions of

(1.1).

Theorem 2.2 Let E is a norm linear space, P C FE is a positive cone. Suppose that
A: D x D — E satisfies conditions (i)-(iv) in Theorem 2.1 and the following condition
(v) Every completely ordering subset in D is relatively compact.
Then the conclusions of Theorem 2.1 hold.

Proof Let G,R,F(G),S,14,Q1,Q2 be the same as those in the proof of Theorem 2.1.
From condition (v) and zorn’s lemma we can conclude that R has maximal element
(z*,¥*) € D x D, and similar to the proof of Theorem 2.1, we can prove that (z*,y*)
are the coupled quasi-solutions of Eq. (2.2), i.e., F(G) #0, § # 0.

For any completely ordering subset {I,|a € A} of S, evidently, @1, Q2 are completely
ordering subset, hence they are separable from condition (v), so there exist countable
dense subsets {a,} and {b,} of @, and Q3, respectively. Set ¢,, = max{ay,a2, --,a,},
wy, = min{by, by, --,b,}, then

ug<eg << <ep <0 Loy, (2.6)

up < - Swp <o < wp S wy < (2.7)

From condition (v), there exist subsequences {c,, } and {wy,, } of {¢,} and {w,}, such that
Cny — €, Wn, — W. (2.8)

Similar to the proof of Theorem 2.1, we can show that I = [¢,w] is a lower bound of
{Io]a € A} in S. Tt follows then from zorn’s lemma that S contains minimal element
[, 7], and [u, v] are the coupled minimal and maximal quasi-solutions of Eq. (1.1).

Theorem 2.3 Let F is a Banach space and conditions of Theorem 2.1 or Theorem 2.2 be
satisfied. Suppose in addition that A(z,z) is continuous in z, and the following conditions

(vi) Y[(AI+T) 1)) < m;

(vii) For any countable set C C D, a(A(C,C)) < a(C)
hold. Then Eq. (1.1) has at least a solution w* satisfying & < w* < v, where (u,v) are
the coupled minimal and maximal quasi-solutions of (1.1).

Proof Set Fz = G(z,z), ¢ € [4, 7], then F is continuous. For Vz € [u,7], by the mixed
monotoneity of G, we have @ = G(%,7) < Fz = G(z,z) < G(v,%) =7, ie, F: [4,7] —
[@,v]. For some z € [u,v] and countable set C C [%,] and C = co({z} U F(C)), from
conditions (vi), (vii) we can conclude that C is relatively compact, then by [2] Theorem
2.1 we know that F has a fixed point w* € [, 7], i.e., w* is a solution of (1.1).

Theorem 2.4 Let E be a real Banach space and P be a positive cone in E. Suppose
that D = [ug,vy] is bounded according to norm || - ||g, A: D — D is semi-continuous in
each variable. If the conditions (i)-(iv), (vi) and the following condition

— 49 —



(viii) For any countable bounded sets By, B, C D with max{a(B,),a(B3)} > 0, we
have

a(A(Bl,Bz)) < ma.x{a(Bl),a(Bz)}, (29)

hold. Then Eq. (1.1) has coupled minimal and maximal quasi-solutions (7,v) € D x D,
such that

lim u, =%, lim v, =7, (2.10)

where u,, = (/\I+T)“1[AA(u,,_.1,vn_1)+Tun_1], U, = (/\I+T)_1[/\A(‘U"_1,un_1)+T1)n_1],
n=1,2,---, which satisfy
UWSU < U STLTS - <o < < vy < v, (2.11)

If we further demand that A(z,z) is continuous in z, then (1.1) has at least a solution u*
satisfying u < v* < 7.

Proof Let G be the same as that in Theorem 2.1, then G is a mixed monotone operator,
which together with condition (i) deduces the following monotone sequence:

wSu < Sup <o S v < < vy < g (212)

Set By = {un|n = 1,2,---}, By = {vnjn = 1,2,---}, then from the conditions we know
that By, B; are relatively compact, therefore there exist subsequences {u,,} C {un.} and
{vn,} C {v.} such that u,, — %, v,, — U. By indirect arguments we can prove that
Un — U, v, — U. Furthermore, (2.12) implies (2.11).

It follows from the monotoneity of G and (2.11) that u,41 = G(un,vs) < G(%,7) <
G(v,u) < G(vn,Up) = Vpy1, n=1,2,---. Let n — oo, we obtain

u < G(u,7) < G(v,u) L 7. (2.13)
On the other hand, for any n,k € N,
G(tn, vntk) < G(Untks Untk) = Untkt1, Untktr = G(Untks tntk) < G(vn, Unyk), (2.14)
then by (2.14) and the semi—continuity of G(z,) and G(,y) we have
G(u,7) < %, v < G(3,%). (2.15)

It follows then from (2.13)(2.15) that w = G(%,v), G(v,%) = 7, i.e., (%, 7) are the coupled
quasi-solutions of (2.2). Similar to the proof of [5] Theorem 2.1.2, we can show that
(u,v) are the coupled minimal and maximal quasi-solutions of (2.2). Similar to proof of
Theorem 2.3, we can obtain a solution of (2.2). Then by the definition of G, we know that
the conclusions of Theorem 2.4 hold.

3. Applications

In this section, we will discuss the following nonlinear implusive integral equation:

z(t) = /: g(t,s)H(s,z(s),z(s))ds + Z L(z(t:),z(t:)), (3.1)

o<t <t



where g(t,s) € C[J x J, R*"], R* is nonnegative real number set, H € C{J X Ex E,E}I; €
ClEx E,E|,i=1,2,---,m, E is a real Banach space and J =[0,a],0 < t; <t3 < --- <
t; < --- <ty <a.Let PC[J,E|] = {z: J — E such that z(t) is continuous at t # t;, and
left continuous at t = ¢;, and the right limit z(¢; +0) = tlirg z(t) exists fori = 1,2,---, P}.

Evidently, PC[J, E] is a Banach space with norm: ||z[[pc = sup [[z||. we always denote
teJ

[anUO]PC = {u € PC[J, E] : up Su <o}, Jo = [0’t1]7 Ji= (tl’tz]’ oy dm = (tmaa]-
(A1) There exist ug, vo € PC[J, E] such that [ug,vo] is bounded according to norm
Il - ||z, and satisfy

up(t) < /(;ag(t,s)H(s,uo(s),vo(s))ds + Z Ii(uo(t:), vo(ts)), t € J,

o<t; <t

w(®) 2 [*a(t )7 (s,00(s), uo(s)ds + 3 L(wolt), uo(t:)), ¢ € J;

o<t <t

(Az) Ii(z,y) is increasing in ¢ and decreasinginy, ¢ =1,2,---,m;
(A3) There exists positive continuous function f(t), such that for any z,22,y1,¥2 €
[uo,volpc With z1 < 23, y1 < ya, We have

/Oa 9(t, ) H(s,22(s),y1(s))ds — /Oag(t,S)H(s,11(8),yz(8))d8 2 —f(t)(z2(2) — 21(2)),

and for fixed z € [ug,vwlpc, H(t,z,y) is decreasing in y;
(A4) Therearek,l; € C[J,R*] (i = 1,2,---,m) satisfying 2 [ g(t, s)k(s)ds+> 72, Li(t) <
1, such that for any countable bounded sets By, B, and t € J, we have

a(H(t, By, By)) < k(t) max(a(B1),a(B:)),
a(l;(B,, B2)) < li(t) max(a(B1),a(B2)), i=1,2,---,m.

Theorem 3.1 Let E be a Banach space and P be a cone in E. Suppose that conditions
(A1)—(A4) hold, then Eq. (3.1) must have a solution w* and coupled minimal and maxi-
mal quasi-solutions (%, v), which satisfy ug < u < w* < ¥ < vg. Furthermore, there exist
{un}, {vn} C [uwo,v0]pc such that u, — %, v, — ¥ and satisfy

U SUup < S, <LK W LTS K $-- <y o

Proof Set

Ae,y) = [ o) (s 2(s)ulo)ds + 3 et u(w)). (3.2)

o<t <t

It is easy to prove that A is continuous. By (A;) we know uy < A(ug,vp), A(vp,up) < vp.
It follows from (A3), (As) that for fixed z € D = [ug,volpc, A(z,y) is decreasing in y and
for fixed y € D, Vz,,z5 € D with z; < z, we have

Alzz,y) — A(z1,y) > — f(t)(22(t) — z1(t)).
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Define Tz(t) = f(t)z(t), then T € L(E), and (M + T)~! = X—fmz(t), t € J. For

any bounded set B C [ug,v]lpc, we have a(T(B)) = f(t)a(B), then we can obtain
(A + T)~Y(B)] = nm%—xfm Since a(T(B)) = f(t)a(B), 7(T) = min f(t), we get

F[(AI+T)"Y(B)] = /\+m;xf(t) < Hmilnm) = /\+;(T), i.e., condition (vi) is verified. For any
teJ teJ

countable bounded sets By = {z,.}, B2 = {yn} C [u0,v0]pc, it follows from (3.2), (A;) and
(A3) that A(B;, B,) is bounded. Since g(t,s) is continuous, A(By, B2) is equicontinuous.
From [4] Lemma 3 we get

a(A(B,, B)) = sug) a(A(Ba(t), Bz(t))). (3.3)
te
For each n, because z,,(t), y.(t) are continuousin t € J;,(i = 1,2,---,m), hence {z,(t)|t €

J} U {yn(t)|t € J} is a separable set in E, so we have {z,(t)|t € J,n € N} U {y.(t)|t €
J,n € N} is a separable set in E, then without loss of generality, we can suppose that £
is a separable Banach space. Thus by (3.2), (A4) and [4] Lemma 4 we obtain

a(A(B1(t), Ba(t))) < max{a(B;), a(B)}. (3.4)

It follows from (3.3) and (3.4) that (viii) holds, then the conclusion follows from Theorem
2.4.
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