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Some Remarks on Rational Interpolation to |z| *
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Abstract: The present paper constructs a set of nodes which can generate a rational
interpolating function to approximate |z| at the rate of O(1/(n* logn)) for any given
natural number k. More importantly, this construction reveals the fact that the higher
density the distribution of a set of nodes has to zero (that is the singular point of the
function |z|!), the better the rational interpolation approximation behaves. This probably
also provides an idea to construct more valuable sets of nodes in the future.
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1. Introduction

In approximation Theory, the function |z| always plays a very important role. It is
well known that the best uniform approximation to [z| by polynomials of degree n can
achieve the rate O(n~!), and this rate cannot be improved further (cf. Bernstein [1}).
However, in 1964, Newman [4] proved that rational approximation to |z| has much more
benefits, exactly, |z]| can be approximated uniformly by rational functions at a nearly
exponential rate. It must be pointed out that the rational function Newman used in his
proof interpolates |z| at the nodes {—a,—a?,---,—a™1,0,a™1,---,a?,a}, a = e!/V7,

Recently, following Werner®), Bruteman and Passow!®! and Bruteman!? consider New-
man type approximation induced by arbitrary sets of interpolation points. Let! X =
{0 < :c(l") < :c(z") << < 1}, p(z) = [Ir=1(z + z;c")
corresponding to the set X is defined by

), and the rational function

o p(@) = pl=2)
mXiz) = T ey )
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'In the sequel, the superscript (n) will be omitted if there is no possibility of confusion.
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For this function r,(X;z), we can easily verify that it interpolates |z| at the set of 2n + 1
points {—2,,- -+, —21,0,21, *,2,}.

Werner first investigated the equidistant nodes and proved that the exact rational
interpolating approximation rate to |z| is O(1/(nlogn)). As people often think that the
roots of Chebyshev polynomials (Chebyshev nodes) play an optimal role in polynomial
interpolation problems, Chebyshev nodes are also studied by Bruteman and Passowl?]
accordingly. However, they showed a disappointed result as well as these nodes can only
achieve the exact approximation rate O(1/(nlogn)) to |z|, like the equidistant nodes.

Bruteman(? shifts attention to the set of nodes obtained by adjusting the Chebyshev
roots E,(c") = cos((2k — 1)x/(2n)), k = 1,2,---,n to the interval [0, 1], namely,

n

X :{zk _ %(1 + fr(;n—)k+1) = sin®((2k — 1)71'/(471))},c=1 )

and proved that the exact order of the rational interpolating approximation to |z is
O(1/n?) in this case. '

These three sets of nodes lead people to ask a natural question why they behave
like this, more exactly, we have the following questions: Why do the optimal nodes in
polynomial interpolation behave so “badly” in rational interpolation case? Why can the
above mentioned “adjusted” Chebyshev nodes get better order? What kind of nodes can
be suitable for rational interpolation purpose?

The present paper constructs a set of nodes which can generate a rational interpolating
function to approximate |z| at the rate of O(1/(n* logn)) for any given natural number k.
More importantly, this construction reveals the fact that if the distribution of a set of nodes
has higher density to zero (that is the singular point of the function |z|!), then the rational
interpolation approximation behaves better. That is why the Chebyshev nodes behaves
“badly” in rational interpolation case (since its density concentrates to the endpoints),
and why the “adjusted” Chebyshev nodes behaves better (since its density concentrates
to zero and +1). This probably also provides an idea to construct more valuable sets of
nodes in the future.

2. Results

In this section, we first construct a particular set of nodes to illustrate the idea, and
the general case will be considered similarly.
Suppose n is an odd number, say n = 2m — 1, and set

21 =1/m?, za=2/m? -, Zp_q=(m- 1)/m?,

Zm=1/m, 2py1 =2/m, -+, Zap_2=(m—-1)/m, Z3,_1=1.

In the case n is an even number, say n = 2m, and set
1 = 1/(m+1)2a z2=2/(m+1)21 Tty T :m/(m+1)2’

zm+1:1/(m+1), 23171-{—2:2/("’7"4'1), Tty zZmzm/(m-'_l)'
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Then the rational function r,(X;z) corresponding to the set X = {z;}}_, as defined in
(1) interpolates |z| at the points {—z,,—~Zp-1, -+, —21,0,21, -+, 2n_1,2,}. We have

Theorem 1 For sufficiently large n, the estimate |z] — r,(X;2) = O (;ﬁog—n) holds.
Moreover, the approximation order is exact.
We only prove Theorem 1 for the case when n is an odd number, and the other can

be treated similarly. We need to establish the following Lemma.

Lemma Let n be an odd number, and

then for z € [1/m?, 1] and sufficiently large n, h,(X;z) = O(1/n).
Proof First let z € [j/m?,(j +1)/m?,j =1,2,---,m — 1. Then

1hn(x;w)|=n""°/’" [ Am —sz/m—z

L=+ k/m? k=it k/m?+z - k/m+z
H:c—k/m H k/m? —z
Lzt k/m? 2 i k/m2+z

From the well-known inequality 1 —z < e * for z > 0,
J m
|hn(X;2)| < exp (—:z:“lm_2 Zk) exp (——:cm2 Z k_l) O(e/2e7lo8(m/i)y  (3)
k=1 k=j+1

It is easy to calculate that e~9/2e=718(™/5) = O(1/m) = (1/n) for 1 < j < m — 1,
so our lemma is proved for z € [1/m?,1/m]. Now suppose that z € [1/m,1], say z €
[f/m,(7 +1)/m],j =1,2,.---,m — 1, similar to the above case,

|hn(X;Z')|_H z—k/m ﬁ kjm -z

szt k/m - +1k/m+:c
<exp (—z m le) exp | —zm Z k7] = 0(1/n),
k=1 k=j+1

thus we completed the proof of the lemma. O

Proof of Theorem 1 Without loss of generality, we only need to prove Theorem 1 when
n is an odd number. Since both |z| and 7,(X;z) are even functions, we can also only
consider the approximation on the interval [0,1]. Then

2zh,(X; )

—rm(Xi2) = —— ==,
== ra(Xi2) 1+ h,(X;2)

z € [0,1],
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where h,(X;z) is defined in (2). The proof will be divided into the following cases.

Case 1 z € [0,1/m?]. Since h,(X;z) > 0 in this case, we see

2zh,(X;2)
= ra(Xj2)| =75 < 2zh, (X 2),
|z — r.(X;2)| 1+h,.(X' )_2zh (X;2)
k/m? k/m—z k/m? -z
ho(X;
(X;2) Hk/m2+:ch/m+z Hk/m2+:c
<H 1 zm’ <ex :o:mzik‘1 < exp(—zm?logm)
- — - —zm?®logm).
=1 A S exp - > exp g

It is clear that the function z exp(—zm?log m) achieves its maximum value in the interval
[0,1/m?)] at z = 1/(m?logm), so that

= k/m? -z 2¢7!
—ra(X;2)| < 22hn(X;2) < < )
|2 — ra(X;2)| zha(X;z) 2z,gk/m2+z mZlogm (4)
that is the required result.
Case 2 z € [1/m?,1/(2m)]. Applying the lemma, for sufficiently large n we get
oL 2zlha(X52)| .
|$ rn(X,a:)l = m = O(z|hn(X,:c)|)
Noting that
k/m? -
k., ot A
elhn( |emrrs (5)
by setting g(z) = =z []i=, ‘k/Lmii , we calculate
9(z) H k/m?—z(k-1)/m?+ =2
g(z — 1/m?) :o:—l/m2 kfm?+z(k+1)/m?2 -2
oz z — 1/m? z & 1
Tz-1/m*(m+1)/mi-zl/m+z 1l/m+z(m+1)/m2—z
22
~1/m? — g%’

In view of z € [1/m?,1/(2m)] in this case, from the above inequality we obtain that

o
20( max g(z)) = 0(1/(n®logn)).

0<z<1/m?

— 68 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Case 3 z ¢ [1/(2m),1/\/m]. Similar to the proof of the lemma, we immediately achieve
that (see the proof of (3))

m/2) | _ k/m?
2 = ra(X52)| 0K 2)) = 0 | I S5

[m/2]
—0 (exp (_ ~1,,-2 Z k)) (e=V™/8),

Case 4 z € [1//m,1]. In this case, we simply calculate that (cf.(3))

that also finishes the proof.

VA e
2 — ra(X;2)| = O(|ha(X;2)]) = O Hf_ﬁ; = 0 (emvr),
e &t k/m

thus the required estimate also holds.
Finally, we need to show that the above estimate cannot be improved. Take z* =
z*(n) = 1/(m?logm), z* € (0,1/m?), by the lemma, for sufficiently large =,

2hn(X;2%)
_ L% * _ A" ) > * ) 6
o= ralXi 2o = T > () (©)
We see
1< 1 B ﬁ k/m? + 1/(m? logm) ﬁk/m+1/(m210gm)
ho(X;2*) iy k/m? —1/(m?logm) [ k/m — 1/(m?logm)
m 2 m 2
) L)
paied klogm —1/ % kmlogm -1
< exp (Z 2/(klogm — 1)) exp (E 2/(kmlogm — 1)) = 0(1),
k=1 k=2
together with (6), |z — r,(X;2)| > «*h,.(X,2*) > =, where C > 0 is a positive

constant independent of n. Up to this stage, we have ﬁn:.ﬁy finished Theorem 1. O

Now we consider the general case. Let k be a given natural number, km < n < (k+1)m
m = 0,1,---. Since we only investigate the approximation rate for sufficiently large n,
without loss of generality assume m > k + 1. Write n = km + j, and assume that
pk<ji<(p+1)k,p=0,1,-- set

1 2 1
1= T ok 2T T ok T Tm P YR
P map 2P T (mtpr 2 T (mtp+ 2R
2 1
2m+p+3=m7:1‘a T 22(m+p+z)-1=W» T
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1 2
Z(k—1)(m+p+2)-k+2 = mtpt2 Z(k—1)(m+p+2)-k+3 = mipt2

m+j-(p+Dk+p+1
m+p+2

where we should note that 2 < m—k+p+1<m+j—(p+1)k+p+1<m+p+1in view
of that m > k+ 1 and pk < j < (p+ 1)k, p = 0,1,---, thus the index range of the nodes
is reasonable. Then, the rational function r,{X;z) corresponding to the set X = {zx}7-;
as defined in (1) interpolates |z| at the points {—2z,, ~Zn-1, ", ~21,0,21, -, Zn_1,Zn}.
We have

ITn = Thm+j = ’

Theorem 2 For sufficiently large n, the estimate ||z| — ro(X;2)| < ﬁ—,‘——-:é; holds, where
Ci > 0 is a positive constant only depending upon k. Moreover, the approximation order
is exact.

The proof is similar to but more complicated than that of Theorem 1, we omit it.
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