Journal of Mathematical Research & Exposition
Vol.23, No.1, 83-97, February, 2003

Prediction of Stock Market by BP Neural Networks
with Technical Indexes as Input *

LI Zheng-zue', WU Weit, GAO Wei-dong?

(1. Dept. of Math., Dalian University of Technology, Liaoning 116024, China,;
2. Dept. of Comp. Sci & Tech., University of Petroleum, Beijing 102200, China)

Abstract: Some widely-used technical indexes of stock analysis are introduced as input
of BP neural networks for the prediction of ups and downs of stock market, and better
accuracy of prediction is achieved. A jump training strategy and three varying training
ratio methods are used to accelerate the training iteration. An online prediction strategy
is applied to monitor the training iteration procedure. The ratio of central distances of
prediction examples is defined, in order to locate the un-stable prediction examples.

Key words: BP neural network; stock market; prediction.
Classification: AMS(2000) 62P20,68W/CLC number: TB114, TP391
Document code: A Article ID: 1000-341X(2003)01-0083-15

0. Introduction

Stock market is complex and liable to change. The problem that investors concern
most is the prediction of ups and downs of stock market. Such traditional techniques as
K-line diagram and average line diagram have gotten favored and been common tools for
studying stock market due to their simplicity and intuitiveness. However, the study of
diagram tendency and the statistical analysis have to be done by human brains, which
is a very difficult job even for financial experts. An artificial neural network which is an
important tool to simulate the structure and function of the neural cells of human brains
may help people to grasp the variation of stock market objectively and accurately.

One of the characteristics of a neural network is its learning (or training) ability.
By training, the neural network can give correct answers not only for learned examples,
but also for the models similar to the learned examples, showing its strong associative
ability and rational ability which are suitable for solving large, nonlinear, and complex
classification and function approximation problems. There are many training algorithms
for neural networks, of which BP network is well-known for its solid theory and wide
application. Many researchers have applied it to stock market to improve the existing

*Received date: 2001-02-27
Foundation item: Supported by the National Natural Science Foundation of China (19971012)
Biography: LI Zheng-xue (1962-), male, Ph.D., born in Heilongjiang province, Associate Professor.

— 83 —

analysis methods (see [5], [6]). For example, Wu, Chen and Liu (cf. [1]) adopted a
ordinary BP algorithm to study the up-down situation of the exchange index of Shanghai
stock market. Since only some basic datum indexes in stock market were used to construct
example vectors, the prediction results there were not ideal. The purpose of the paper is
to consider the similar problem and to improve this result by making use of some more
effective long-term technical indexes.

This paper is organized as follows. The BP network is introduced in Section 1, where
the number of nodes of each layer and a few parameters in the network are settled. The
procedures and methods of network training and predicting are given in Section 2. In
order to improve the convergence speed of the network training, the network is trained by
two new algorithms in Section 3. Numerical experiment results are analyzed in Section 4.
Finally, conclusions are given in Section 5.

1. BP Network

1.1 An introduction of BP network

A BP network with a hidden layer
can approximate with arbitrary preci-
sion an arbitrary nonlinear function de-
fined on a compact set of R™ (cf. [7], [8]
and [9]). The topological architecture
of a BP network is shown in Fig.1. BP
algorithm is a training algorithm with
teachers, whose training procedures are
divided into two parts: a forward prop-
agation of information and a backward
propagation (BP) of error. The net- Fig.1 A BP neural network whose output node number s |
work’s training procedures is described
below.

Let the node numbers of input and hidden layers be N and M respectively. In this
paper, the node number of the output layer is ascertained as 1. Let the input example
vectors be €4 = (£, &, -, &) (1 < p < P). We define £ = —1, so as to convert
the threshold value for each hidden node into the first component of the weight and to
make the mathematical treatment more convenient (see e.g. [9]). Denote by w;;(1 <
it < N,1 < j < M) the weight connecting the ith input node and the jth hidden node.
Denote by W;(1 < j < M) the connection weight between the jth hidden node and the
output node. g(z) and f(z) are the activation functions of the hidden layer and the output
layer respectively. When training examples {# are input to the network, the input and
output values of the jth hidden node are denoted as h;-‘ and Vj“ (1<j<M1<u<P)
respectively, while the input values and output values of the output unit are denoted by
H* and O¥(1 < p < P) respectively. In symbol we have

Output layer

Hidden layer

Input layer

N
B =S et (1.1)
i=1

V;'p = g(h;‘), (1'2)

M

H* =) W;VF, (1.3)
j=1

Oo* = f(H"). (1.4)

Let the desired output corresponding to the input example £# be (#. (In classification
problem, according to the type of output layer’s activation functions, usually (* are chosen
as {0,1} or {—1,1}, and the last definition is chosen in this paper). Then the square error
function for this step of training is

B, = 2 (¢* - O"). (1.5)

| =

The overall square error function after all examples are used is

P
E - 0"y, (1.6)

er—t

Let W denote the vector containing all the weights. The purpose of BP algorithm is to
choose W so as to minimize the error function by, say, the gradient descent method. So
the general expression of the iteration formula is

W(t+1) = W(t) + AW(2), (1.7a)

where

(1.7b)

W=W(t)
is the weight increment at time t, and the positive constant 7 is the training ratio.

In practical application, a momentum term is often added to Formula (1.7) to accelerate
the convergence speed, resulting in

AW(t) = 7 (_(%%)'W:W(t) +alW(t - 1), (1.8)

where the positive constant « is a momentum factor.

A popular variation of the standard gradient method (1.7) is a so called online gradient
method (OGM for short), where we replace E in (1.7) by E,. This means that the weight
values are modified as soon as a training example is input to the network. Now we have

) — O%) £/ (H*) VY (19)

By the chain rule and (1.1)-(1.5), we have

Awu—n() n(C* — OF) §' (") Wig' (h¥) €. (1.10)

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

The training examples {¢{#} are usually supplied to the network in a stochastic order (for
example, 2-3-1-1-3-2-.--).

It is more likely for OGM to jump off from a local minimum of the error function, com-
pared with the standard gradient method, and it requires less memory space. Therefore,
OGM is widely used in neural network training (cf. [11]).

After weight values W; and w;; are determined through network training, we supply
to the network with an input vector ¢ with respect to a certain day’s market situation,
resulting in an output value O according to (1.1)-(1.4), which predicts the up (O € (0,1))
or down (O € (—1,0)) of the market in the next day.

As in [1], this paper also uses a three-layer BP network with OGM to study the
stock market. The activation function of the output layer is a hyperbolic tangent func-
tion f(z) = tanhz, while the activation function of the hidden layer is g(z) = tanhfz
(0 < B < 1). In order to have more adjustable parameters and get more precise solutions,
a threshold value is set in the hidden layer whose input component is —1. Usually small
initial weight values (including threshold value) are chosen, otherwise the activation func-
tion will reach saturation in the beginning of training and the network will fall into local
minimum around the initial point. Based on numerical experiments, initial weight values
are chosen randomly in the interval (—0.05,0.05).

Remark Unless otherwise stated, all the numerical experiment results in this paper are
average values of five independent experiment results under certain conditions.

1.2 training example vectors
1.2.1 The selection of input example vectors

For the convenience of comparing with the results in [1], we also make use of 135 data
of the exchange index of Shanghai Stock Market from June 26, 1998 to Jan. 12, 1999. We
use the data of the first three months to form 80 training examples, and the data of the
last month to form 25 test examples.

A very important problem is to select some suitable technical indexes as the compo-
nents of the examples. Representativeness is demanded when the indexes are selected, and
at the same time, the independence of the indexes should be noticed. Not only should the
important effects of recent data be taken into account, but also the effects of historical
data should be utilized. Twelve common technical indexes of stock market as given in
Table 1 are selected through many experiments.

Table 1 . The components of input example vectors

61 -1 Es .Index K
& Today’s closing quotation index & Index D
&3 | Today’s up-down value 10 RSI

&a Yesterday’s up-down value 3% DIF

&s The day before yesterday’s up-down value 130 DEA

&6 | Average up-down value in the past ten days(including today) &3 | BIAS
&7 | Average up-down value in the past thirty days (including today)

In the above table, components £; — &7 are easy to be understood. The other six indexes

— 86 —

are introduced below.

Stochastic (KD line)

Stochastic index line (KD line) is a common technical analysis tool in European and
American futures and stock markets. It synthesizes the concept of momentum and the
advantages of strong-weak index and moving average line, so it is sensitive to middle and
short term market situation. First we need to calculate

today’s closing quotation price-the lowest price in the past nine days

- x 100.
the highest price in the past nine days-the lowest price in the past nine days

RSV =

Then the values K and D may be obtained:

Current day’s K = the past day’s K x 2/3 4 current day’s RSV x 1/3,
Current day’s D = the past day’s D x 2/3 + current day’s K x 1/3.

The values K and D are always between 0 and 100. The past day’s values are taken
as 50 to start the calculation.

Relative strength index (RSI)

Relative strength index (RSI) is applied first to futures market where fast price vari-
ation and intense speculation are common. Later it is introduced into stock market. RSI
analyzes the stronger or the weaker trend of buyers and sellers in stock market in a certain
period of time according to the extent of ups or downs of stock prices. The period for RSI
may be longer or shorter. The shorter the period is, the more sensitive RSI is. In this
paper RSI’s period is chosen to be twelve days, so the formula is

RSI =average up of closing quotation in the past 12 days—+
(average up of closing quotation in the past 12 days+
average down of closing quotation in the past 12 days) x 100.

RSI’s value is also between 0 and 100. RSI is usually applied together with KD lines
for the middle or short term prediction of the market.

DIF and DEA

We first need to calculate EMA (exponential moving average value) which is a de-
velopment of moving average line. It keeps the advantages of moving average line, but
overcomes the defects of moving average line that false signals occur frequently. Based on
our numerical experiments, we adopt the twelve and the twenty-six days EMA:

EMA12 = the last day’s EMA x 11/13 + the current day’s closing quotation price x 2/13,
EMA26= the last day’s EMA x 25/27 + the current day’s closing quotation price X 2/27.

The first day’s EMA to start the calculation is taken as the current day’s closing quotation
price.

— 87 —

Now we can compute DIF and DEA.

DIF= EMA12-EMA26,
DEA= the past day’s DEA x25/27+current day’s DIF x2/27.

DIF means the difference between the fast moving average line and the slow moving
average line, while DEA is the average value of DIF in some days. DIF and DEA run
around zero-axis, reflecting not only the wave of the present stock prices, but also the
variation trend of the market in future. Usually they are used as middle-term indexes.
They may also be used to estimate short-term’s rollback point.

BIAS

BIAS is often simply called Y, which means the percent ratio of the stock index
deviation from the moving average line. Like moving average line, there are long, middle
or short BIASs according to different time periods. A twelve days period is adopted in
this paper, so the formula is

Y - (curre.nt day’s cliosing .quo.ta'fion price _ 1) « 100%.
average closing quotation price in the past 12 days

BIAS might be positive, negative or zero when the stock price is at the moment moving

above, below or on the average line, respectively. BIAS increases or decreases with the up
or down of stock price tendency.

1.2.2 Preprocessing of input example vectors

The magnitude of the components of the example may differ greatly in practice. If the
original data are input directly, the network might be controlled very quickly in training
process by the “big” components. So the data have to be preprocessed to make a balance.
Based on numerical experiments, the value range of each component in our input example
vectors is chosen as (—3,3), and all the components are normalized accordingly.

1.3 Determination of neuron numbers and parameters

1.3.1 Number of hidden nodes

The function of hidden nodes is to extract the features of input vectors in training
process. The choice of its number is very important. But there is no general formula for
it. A common method is to try to search through numerical experiments of the practical
problems. To do this, we randomly choose 65 training examples from 80 training examples
with the other 15 examples as test examples. The parameters of the network are chosen as
follows: training ratio = 0.025, momentum factor a = 0.2, parameter 3 = 0.65, overall
number of iterations is 1500. Related data are stored when the largest correct prediction
ratio. of the test is attained. The investigating range of hidden node number is from 1 to
5.

The correct prediction ratio of the test always oscillates between 70 and 80 when
number of hidden-nodes is 1 or 2, so that 1 and 2 are not taken into account.

Table 2 Network performance for different hidden node numbers

Number of Number of | Correct prediction | Training | Correct prediction Test
hidden nodes | iterations in training(%) error in test(%) €rror
3 932 94.15 7.298 64 10.306
4 1198 96 5.199 53.333 13.954
5 1206 98.15 2.526 54.667 12.749

Note: the training errors and the test errors in the table (and in the other tables below) are

calculated according to (1.6).

When the number of hidden nodes is 4 or 5, the network behaves good for the training
examples, but bad for the test examples, indicating an over-training. A much better
balance is achieved when the number of hidden nodes is 3. So 3 is chosen as the number
of hidden nodes. Thus the numbers of each layer’s neurons in the network are 13-3-1.

1.3.2 Determination of parameters

The network has three constant parameters to be chosen: the training ratio 7, the
momentum factor a and the shape parameter 8 of the activation function of the hidden
nodes.

The training ratio n is one of the key parameters that affect network’s behaviour. We
can fix the training ratio to be a very small constant, or make it adaptive in the training
process in a certain fashion. The former has a stable training process but a long training
time. The latter has a fast convergence speed, but is liable to oscillate. The introduction
of the momentum term may accelerate the passing through of the error surface’s flat
region. The shape factor S makes the activation function more “flat” around the origin
and enlarges the unsaturated interval of the activation function, so as to improve the
efficiency of network training.

The three parameters are selected as

follows.
First, we set a = 0 and § = 1.0,

and perform 1500 iterations. The er- 40 Learning ratio
rors with respect to the number of it- a: 0.1
erations are recorded for different 7(see e IC’ (())'(())sl
Fig. 2). We find that the convergence 5% & 0.025
speed is faster when 7 = 0.025. Also é
note that this 7 is small, and unlikely to o204
cause oscillation. So we take n = 0.025. 2

Next, we set n = 0.025, § = 1.0, 104
and check for different a. Several main d
performance indexes of the network are 0 400 800 1200 1600
recorded when the corrective ratio of lterating nurmber
the training achieves the largest. Fig.2 The influence of training ratio

— 89 —

Table 3 Performance for different o

a Number of Corrective ratio Training training
Iterations of training(%) error time(s)
0.1 732 93 12.766 4.37
0.15 734 92 13.251 4.22
0.2 704 92.25 13.164 4.07
0.25 794 92.5 13.003 4.60
0.3 705 92.5 12.612 4.06

Obviously, network gives good results when a = 0.2 and 0.3. But when a = 0.3, there is
one training whose corrective ratio is less than 90% in five successive experiments, so that
what the table shows are the average values of the other four calculations. If the number of
experiments increases, the failing ratio of network training becomes higher when a = 0.3.
Therefore, we take a = 0.2.

Like in the determination of the number of hidden nodes, we randomly choose 65
training examples from 80 examples and leave the other 15 examples as test examples.
Suitable § is determined through experiments accordingly.

Table 4 Experiments for different §

B Number of Corrective ratio Training Corrective ratio Test

Iterations of training(%) error of test(%) error
0.35 994 92.5 13.078 68 16.281
0.5 1962 92 14.011 62.4 17.242
0.65 842 92.25 13.397 68.8 15.014
0.8 587 92.75 12.886 68 15.923
0.95 898 91.88 13.408 69 15.449

We see that the test errors are small for 8 =0.65 and 0.95. When S is 0.95, the corrective
ratio of test is a little better, but the other indexes are worse. Besides, since 0.95 is close
to 1, it dose not enlarge the unsaturated interval very much. So finally we select § = 0.65.

2. The network’s training and predicting

The purpose of network training is to find weight values with the smallest square error
within given number of iterations. After weight values are determined, predicting results
may be gotten by inputting predicting example vectors. This kind of prediction may
be called as off-line prediction since it is done after the network’s parameter adjustment
has ended and all parameters have been “solidified”. Sometimes, training examples and
predicting examples have been determined before the network training begins (as in this
paper), so online prediction may be adopted. Here we interrupt the training process after
one network training cycle is finished, and to input predicting examples to the network,
then to output onto screen with a scroll manner the predicting results such as number
of iterations, corrective ratios of training, training errors, corrective ratios of predicting
and predicting errors etc. Thus we can directly observe the training process. In off-line
prediction, training and predicting are done separately. Since no predicting example par-
ticipates in training, only some data relating to training can be gotten, and the predicting

results can only be roughly estimated. On the other hand, online prediction, which com-
bines training and predicting, can observe the whole process of training and predicting,
and may artificially monitor the tests. When the network falls into local minimum and
predicting precision can not attain 50% (which is an unsuccessful experiment), or when the
network has attained a desired predicting precision, intervention may be done and training
may be terminated. This method may get not only weight values and predicting values but
also some useful intermediate results. Over-training (which means higher corrective ratio
of training and lower corrective ratio of predicting) may also be prevented. Off-line pre-
diction method is suitable for practical applications, while online prediction method lays
particular stress on theoretical study. Table 5 shows the results of 5 successive numerical
experiments with online prediction method, while table 6 shows a group of weight values
when the corrective ratio of predicting attains 80%. The largest number of iterations is
15000 in the experiments. Corresponding data are recorded when the corrective ratio of
training attains the largest. It is obvious that the results are better than the predicting
results in reference [1]. It shows that technical indexes are indeed effective for predicting
stock market.

Table 5 The predicting results of “online prediction”

Experiment Number of | Corrective ratio | Training | Corrective ratio | Predicting

order Iterations | of training(%) error of test(%) error

1 10950 92.5 11.316 80 11.044

2 2123 91.25 12.359 72 13.912

3 1083 92.5 11.986 72 14.208

4 3961 93.75 10.003 68 16.502

5 957 92.5 11.992 68 15.991
Average value 3815 92.5 11.531 72 14.331

Table 8 Optimal weight values(corrective ratio of predicting being 80%)

Hidden node order 1 2 3

-3.95741 5.42461 | 0.78667 -3.54847 | 0.19966 -2.57813
1.91568 0.29113 2.44472 2.52897 | -2.37693 -1.08246
Weight values between | -5.14366 4.63912 | 2.65822 .3.91084 | -1.36628 -1.58642

input layer nodes 7.51483 -3.11738 -0.07853 -0.7151 5.45245 1.73193

and hidden nodes -6.2316 -2.22303 | 3.74178 -1.04297 0.73588 0.50547
-11.7405 -7.21882 | 2.08104 -8.23311 | -1.49943 -1.26666
-5.95016 -1.57401 -1.47589

Weight values between
hidden nodes and 6.11536 4.86099 9.94453
output layer nodes

3. Jump training strategy and three variant training ratio algorithms

It may be found from Table 5 that the convergence speed of BP algorithm is slow. In
online prediction we observe that when the corrective ratio of training is 92.5% and the
corrective ratio of predicting attains 72%, the network training goes into a large flat region.

— 91 —

Only after a long time movement at “a snail’s speed” can it attain 80%. If we take the
whole number of iterations for the network training as the number of iterations when the
corrective ratio of predicting attains the highest 80%, the number of iterations for running
across the flat region takes 92.5% of the whole number of iterations. So it is necessary to
search fast algorithms in order to improve network’s training speed and shorten the time
for running across the platform. Many good methods have been proposed, of which two
methods are tested in this paper.

3.1 Jump training strategy

Each training example has different convergence speed in training. Some example’s
square error may become small very early in the process of training. Computing time will
be wasted if such examples are repeatedly used for training. The idea of jump training
is to define a lower bound E,;, for the error. If an example’s output error is lower than
E,nin, we do not perform the backward propagation training and jump directly to the
next example. Three bounds are set in this paper for the application of jump training.
We take E.;, = 0.0001 when the corrective ratio of training is lower than 72%. The
reason for choosing so small an E,,;, is that the number of jumps should be restricted
at the beginning of training to prevent the useful information loses too much. When the
corrective ratio of predicting reaches 72% and tends to stabilize (for example, the corrective
ratios of predicting do not change within 20 successive training cycles), En, is enlarged
to 0.001. When the corrective ratio of predicting reaches 76%, we take E; = 0.01 in
order that the network can run quickly across the platform region. Table 7 shows the
training situations of jump training for some experiments when the corrective ratios of
predicting aré larger than or equal to 76%. For the convenience of comparisons, we give
corresponding calculating results of ordinary BP algorithms.

Table 7 Performance comparisons of jump BP and ordinary BP

Algorithm | Number of | Cost | Corrective ratio | Training | Corrective ratio | Predicting
Iterations | time(s) | of training(%) error | of predicting(%) error
Ordinary BP 11144 104.4 92.50 10.958 76.8 12.352
Jump BP 6588 55.2 90.25 14.398 76.8 11.729

It may be seen that the iteration number of the weight values decrease about 42%
(which occurs mainly in the middle and latter periods of network training) when jump
training is adopted. Although the jump training makes the corrective ratios of network
training decrease and the training errors enlarged both slightly, the numbers of iterations
are decreased and training time is shortened both greatly, showing the feasibility of this
method.

3.2 Batch training with varying training ratios

In addition to the jump training, we also train networks by three algorithms with
varying training ratios based on batch training which were considered respectively in [2],
(3] and [4].

— 92 —

The training ratio formula in a fast training algorithm given by Vogl 2 was

{n(t) =An(t-1), a=a; for AE(t) <0 (3.1)

n(t) =en(t—1), a=0; for AE(t) >0,

N-1
where AE(t) = E(t) — E(t — 1), E(t) = Z E(t), A > 1,0 < € < 1. This method was
k=0

based on an idea in optimization theory: training ratios were enlarged when global errors
decreased; otherwise training ratios were decreased. In our numerical experiments, we
take initial training ratio n(0) = 0.6, momentum factor a = 0.95, parameters A = 1.15,
and £ = 0.8.

The training ratio given by Lei Ming et al.l®! is

n(t) = e**n(t - 1), (3.2)

where the proportion constant A € (0.1,0.2), 8 is the angle between the current training
error gradient vectors and the last time’s training error gradient vectors, and cos reflects
the curvature variation on the error hypersurface. When cos @ > 0, the error surface is in
a flatter region, indicating that the training ratio should be enlarged. When cosf < 0,
the error surface is in a valley, and the training ratio should be decreased to prevent
oscillation. In our case, we take training ratio n(0) = 0.6, proportion constant A = 0.15,
and momentum factor a = 0.85.

A fast BP training algorithm with adaptive training ratio via linear reinforcement
given by Deng Zhidong et al.[4! makes use of gradient information:

{ An(t) = edn(t - 1); (3.3)
n(t) = n(t — 1) + An(t),

where the constant ¢ € (0.2,0.3), and A = sgn (a‘%ﬂ . WV%%T)' Its essential idea is that
if the angle of the gradient directions of two successive iterations is larger than /2, then
the training ratio is too large, and should be decreased; otherwise the training ratio should
be enlarged. We modify (3.3) a little bit in our application:

{n(t) = 1.159(t — 1), for A > 0; (3.4)

n(t) = 0.87(t — 1), for A <0,

where 7(0) = 0.6, momentum factor a = 0.85.

All the above three methods are algorithms with adaptive varying training ratio. In
order to prevent overflow of the ratio, we require an upper bound of training ratios:
Thmax = 2.5.

Some numerical experiments have been done for the above three methods. Table 8
records the experiment results when the corrective training ratio of predicting is large
than or equals to 76%.

Table 8 Performance of the three methods with varying training ratio

Algorithm | Number of | Cost | Corrective ratio | Training | Corrective ratio | Predicting
iterations | time(s) | of training(%) | error | of predicting(%) error
Reference [2 1192 9.56 90.75 17.435 76.8 12.491
Reference [3 1450 11.71 90.75 15.624 76.8 12.161
Reference (4 2621 12.27 93 13.538 76 12.717

Compared with Table 7, the network’s training time for the three methods with varying
training ratios is indeed shortened. But at the same time we find for all the three train-
ing methods that fewer experiments reaches 76% (or 80%) corrective ratio of training in
several (say, ten) successive numerical experiments, and that the average values of largest
corrective ratios of predicting in each experiment are lower, compared with ordinary BP.

4. Analysis of numerical experiment
4.1 On the randomness

In the process of network training, initial weights are given randomly, and input ex-
ample vectors are also supplied to the network in a stochastic order. Thus each numerical
experiment starts from different initial point and goes through different route, so the
searching range on the error surface is enlarged and the chance to get an optimal solution
is increased.

To show this in our case, we design a few experiments as follows for comparison: all
numerical experiments use the same group of initial weights and the training examples
are input to the network.in a fixed order. Then the network’s training and predicting
are generally worse than that of the above stochastic approach. Therefore, it seems that
the introduction of stochastic mechanism is necessary when OGM is applied to network
training.

4.2 Classifying predicting examples

Through monitoring the classifying process of the online prediction, we find that the
each predicting example behaves differently in the network training. Most predicting
examples’ predicting results are basically determined after training has begun only for
a shorter time. The other fewer predicting examples’ predicting results often change in
the process of network training. In addition to this, it is found from the 10 numerical
experiments with 80% of corrective ratio of predicting that when the corrective ratio of
predicting attains 80%, 20 examples are classified correctly in every time, but the other
5 predicting examples are classified incorrectly. It is desirable if there is a method to do
the following: 1. Predicting examples are roughly classified according to their different
behaviour; 2. The rough positions of these incorrectly classified examples are determined
in the whole group of predicting examples when the corrective ratio of predicting attains,
" say, 80%. To this end, we propose a concept of center distance ratio of predicting examples.
Denote the training example vectors by T, = (£1,&5,---,€53) (1 < p < 80), and the

predicting example vectors by P, = (yH80 ey+80 ..., i/;so) (1 <v<25). If we set
T[k] = Y50, €/80, Plk] = Y22, £,4%0/25, and 1 < k < 13, then the vectors Ty =

(T[l],T[2], - ,7[13]) and Py = (?[1],?[2], ‘e ,ﬁ[13]) which consist of the average value
of each example vector’s component may be called as the centers of the training example

vector group and the predicting example vector group respectively. We define the norm
of z € R¥® by ||z|| = T3, |z«|- Then we write

€+ - Tk / >

Thus the parameter A, means the ratio of the distances between predicting example vector
P, and vector T and between P, and P,. It is simply called the center distance ratio of
predicting example P,.

A numerical experiment we did in this respect is as follows. First, 25 predicting
examples are numbered with 1-25 in their natural time order. Then, since network training
in the beginning is unstable and its results’ credibility is lower, we start the monitoring of
the training in the middle and latter periods. We concentrate on those trainings which the
corrective ratios of predicting attain 80%. When the corrective ratio of predicting attains
64% and tends to be stable, the 25 examples’ predicting results are recorded respectively:
1 denotes a correct prediction, and 0 a wrong prediction. Because corrective ratios of
predicting increase progressively with a step of 4%(1/25), when the corrective ratio of
predicting increases from 64% to 80%, each predicting example may get 5 records. In
order to increase reliability of the experiments, 10 numerical experiments in the same
conditions are done, so each predicting example getting 50 records, and the value of each
record is either 1 or 0. Obviously, the predicting results of the predicting examples whose
accumulated sums are close to 50 (or 0) become basically stable (unchanged) after the
corrective ratios of predicting attain 64%, so that they can be called as stable predicting
ezamples. The accumulated sums of the predicting results of the other predicting examples
are farther from 0 or 50 (generally between 20 and 40). In the process of predicting, their
predicting results often change with the increase of the corrective ratios of predicting, so
that this type of predicting examples may be called as unstable predicting ezamples.

Table 9 gives all the examples’ center distance ratios A, and the accumulated sums of
50 numerical experiment records.

g - Plk]|, 1<v<25. (4.1)

/\,,:Z

k

13
=1

Table 9 Performance indexes of predicting examples

Example order 12 13 9 11 14* 19 15 16
Center distance ratio | 3.912 | 3.861 [3.679 | 3.650 { 3.494 | 3.084 | 3.074 | 3.058
Accumulated sum 49 50 49 50 0 50 50 50

Example order 8 10 21% 22* 18 17% 20 7
Center distance ratio | 3.009 | 2.994 | 2.935 | 2.927 | 2.906 | 2.749 | 2.711 | 2.390
Accumulated sum 46 50 0 1 50 0 50 49
Example order 23 3 6 2 4% 1 5 24 25

Center distance ratio | 2.376 | 1.815 | 1.672 | 1.501 | 1.478 | 1.262 | 1.195 | 1.007 | 0.845
Accumulated sum 20 20 50 50 29 30 36 21 50

It is easy to see that the values A, of stable predicting examples are generally larger,
which mainly exist in the first two rows in Table 9; while the values), of unstable

predicting examples are less, which is in the last row in the table. In addition, we have
recorded the variations of the predicting results of unstable predicting examples by means
of monitoring in the process that the corrective ratio of predicting increases from 64% to
80%.

Table 10 Variations of the predicting results of “unstable predicting examples”

Corrective ratio of predicting (%) Statistics of the variations of predicting results
64-68 8(4), 5(6)
68-72 1(10)
72-76 4(9), 24(9), 23(8)
76-80 3(8)

Note: 8(4) in Table 10, for instance, means that the predicting result of the 8th predicting
example has changed for four times in 10 numerical experiments in the process that the corrective
ratio of predicting increases from 64% to 68%.

Obviously, in the middle and latter periods of network training, predicting examples’
classification is mainly done in descending order of accumulated sums of unstable predict-
ing examples.

It might have been noticed by careful readers that in Table 9 the right upper corners
of five examples are remarked with “x”. These five examples are those that are always
incorrectly classified in the whole 10 numerical experiments mentioned before when the
predicting ratio of predicting attains 80%.

The above analyses on the predicting results are not only a kind of “afterprocessing”,
but also a continuation of prediction. They may reveal quite valuable information of
the training. In our problem, we have found the regions where the incorrectly classified
examples are concentrated (the middle part of Row 4 in Table 9) by means of the concept
of center distance ratio of predicting examples. Based on this, the predicting results (0 or
1) of all the predicting examples in this region (21, 22, 18, 17) are simply taken reverse
operations (0 and 1 exchange each other). Then the corrective ratio of predicting increases
from 80% to 88%. the network predicting precision is thus improved. Of course, further
investigations are needed in this respect.

5. Conclusions

(1) Suitable technical indexes of the stock market are used to construct example vec-
tors, which has increased the corrective ratio of predicting of BP network for the stock
market.

(2) Online prediction method we introduced in this paper can help us to monitor the
training and predicting processes, and the training may be terminated according to the
practical situations so as to improve the efficiency.

(3) Ordinary BP network has good results on the prediction of the of stock market,
but its convergence speed is low. The introduction of jump training increases the training
speed. Although the three fast batch training algorithms with varying training ratio
tested in this paper can increase the training speed, their whole predicting results are a
little worse and their stabilities are worse than ordinary BP.

— 96 —

References:

[1] WU Wei, CHEN Wei-qiang, LIU Bo. Prediction of ups and downs of stock market by BP
neural networks [J]. Journal of Dalian University of Technology, 2001, 41(1): 9-15.

[2] JIAO Li-cheng. Neural Network Calculation [M]. Xidian University Xi’an China Press, Xi’an,
1993, 41-42. .

[3] LEI Ming, WU Ya, YANG Shu-zi. Non-linear time series modelling and forecasting using the
neural network approach [J]. J. Huazhong Univ. of Sci. Tech., 1993, 21(1): 47-52.

(4] DENG Zhi-dong, SUN Zeng-qi. Fast BP learning algorithm with adaptive variable stepsize via
linear reinforcement [J]. Pattern Recognition and Artificial Intelligence, 1993, 6(4): 319-323.

[8] TAKASHI KIMOTO, KAZUQ A. Stock market prediction system with modular neural net-
works [J]. International Joint conference on Neural Network, 1990, 1(1): 1-6.

[6] KEN-ICHI KAMIJO, TETSUJI T. Stock price pattern recognition: a recurrent neural network
approach []]. International Joint conference on Neural Network, 1990, 1(1): 215-221.

[7] XU Bing-zheng, ZHANG Bai-ling, WEI Gang. Theory and Application of Neural Networks
[M]. South China University of Technology Press, Guangzhou, 1994. '

[8] WAN Ke-jun, WAN Ke-cheng. The Modeling, Prediction and Cortrol of Neural Networks
[M]. Harbin Engineering University Press, Harbin, 1996.

[9] JIAO Li-cheng. The Theory of Neural Network System [M]. Xidian University Xi’an China
Press, Xi’an, 1996.

[10] XIE Guo-min and LI Wen-gang. The Analysing Expert of Stock Market Technology [M].
Enterprise Management Publishing House, Beijing, 1997.

[11] SIMON H. Neural Networs: A Comprehensive Foundation {M]. Tsinghua Universtiy Press
and Prentice Hall, Beijing, 2001.

5IAEARTE#RE BP MEER GNP AR
FEFL, X WL B % K?
(1. KEBTRENARER 7 K% 116024; 2. AMASTENE JLEK 102200)

W B AR A — B RIEGE BP MAMNB AR R, FILE
B b, P TRIERIBRBGET T . BURERAREY, ke m M A mneE
WK, ERBRKE S R =M IR, f#y A I 5uxt BP ME#HT TS W8T
BUmesE]. 2R “ERTW” AT EX TS BT T IRER. §EXE BRI B A7 B AR &
BMGR EAFENZER, SIABREEA G OIEE MBS ILET R 4, 83—
WERREENER.

— 97 —

