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Abstract: The problem of periodic solutions for Liénard equations with infinite delay
2

Z+ %ﬂi‘ + g(t,z¢) = p(t) is discussed by using Mawhin’s coincidence degree theory.

Some new results on the existence of periodic solutions are derived.
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1. Introduction

The problem of periodic solutions of nonlinear Liénard equations has been taken into
account greatly, which has wide background in applications (such as forced oscillations in
electronic engineering, mechanical oscillation, and so on). In this paper, we discuss the
existence of periodic solutions of liénard equations with infinite delay of the following form

8%F(z)
0z

where F € C*(R",R), g € C(R X Ch, R"), @ € Ch, z¢(8) = z(t +6), 6 € (—0,0], and g is
w-periodic with respect to the first argument, p € C(R, R™), p(t+w) = p(t), Jy’ p(t)dt = 0,
w > 0. For details of the space Cj, we refer the readers to [1].

In recent years, with the introduction of functional analysis, some excellent results have
been obtained for ordinary differential systems of the Liénard type £+ 92(.,—";221:&+ g(z) = p(t)
on the existence of periodic solutions [2,3]. But for Eq.(1), the results on this subject have
been read rarely. The purpose of this paper is to use Mawhin’s coincidence degree theory
to discuss the problem of periodic solutions of Eq.(1). It is convenient to solve the problem
of periodic solutions for a kind of Liénard equations with exponential functions by using
our results which are acquired in this paper, it is also valid to the Liénard equations with

i+ z +g(t,2) = p(t), (1)

*Received date: 2000-05-22
Foundation item: Supported by the NNSF of China (10071097)
Biography: PENG Shi-guo (1967- ), male, Ph.D., Associate Professor.

— 98 —



quasibounded nonlinearities. So our results extend the former throrems in [4].
2. Lemma and notation

Let X and Z be real normed spaces and L : domL C X — Z a linear Fredholm
operator with index zero. Let N : X — Z be a nonlinear continuous mapping. Then
there exist continuous projections P : X — X and Q : Z — Z such that ImP = ker Q.
Moreover, the mapping L : DomL Nker P — ImL is invertible. Denote its inverse by
K :ImL — DomLNker P. Let Q2 be an open bounded subset of X such that DomL N #
é, The mapping N is said to be L-compact on  if the mappings QN : Q — Z and
K(I-Q)N : ! — X are compact, i.e., continuous and Q N(Q), K (I-Q)N(Q2) are relatively
compact. Let J : ImQ — ker L be an isomorphism and M = P+ JQN + K(I — Q)N.
Mawhin defined the coincidence degree in [5]: d[(L,N),Q)] = deg( — M,Q,0). On the
basis of Mawhin’s theorems!5!, we obtain the following lemma.

Lemma 1[% Suppose that the following assumptions hold:

(1) K is continuous and N,® are L-compact;

(2) There exist a linear functional v : Z — R with ImL C kery and constants
ay,az > 0,081,082 > 0 such that

N2l < 9(Na) + aule| + By, = € X,

[®z| < y(®z) + az|z]| + B2, z € X,

(3) Every possible solution z of the equation A\QNz + (1 — A\Q®%z = 0,X € (0,1)
satisfies the relation |Pz| < p|(I — P)z|+ r,p > 0,7 > 0;

(4) d[(L,®),Bx(s)] # 0,s > r, where Bx(s) is an open ball of center 0 and radius
s in X. Then there exists an ag > 0 such that the equation Lz = Nz has at least one
solution provided a; + as; < ag.

For any vector z = (z1,23,+-,2,)] in R", we define its norm |z| = 3%, |2;], and
for any n x n matrix A = (a;;), define its norm ||A|| = max;<j<n Y iz |ai;|. In the
following parts of this paper, we always choose X = {z € CY(R,R")|z(t) = =(t +
w)}, Z = {z € C(R,R")|z(t) = z(t + w)}. For z € X, we define the norm ||z|| =
max(suPoc;<, |2(t)],SuPo<scw |2(t)]), and for 2z € Z,|z|; = 1 f/12(t)|dt. It is obvious
that X, Z are normed spaces. Let C denote all of continuous function ¢ : (—o00,0] —
R™,h € C((~0,0],[0,00)) and 0 < I = [°_ h(s)ds < oo, for ¢ € C([a,b], R"),we define
|p|leb) = sup,<¢<p [(t)]. Define Cp, = {p € C|f2 h(s)|p|*ds < oo}. For ¢ € Cy, we
define its norm |, = [°_ h(s)|¢|l*?lds, and we denote the space (Ch,| - |1) by Ch, then
C} is a Banach spacelll.

3. Main results

Theorem 1 Suppose that the following conditions satisfy:

(1) There exists a constant b > 0 such that ||—6—25%§)|| < b for any ¢ € R";
(2) The functional ¢ maps bounded sets into bounded sets. There exist « € R*, e > 0
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and continuous function f3 : (—o0o0,00) — (0, 00), such that

l9(t, )| < (e, g(t, @) +elglh + B(t), @ € Chrt € R,

where (-,-) denotes the inner product in R"™;
" (3) There is r > 0 such that for any z € domL with infycg |2(t)] > r, it implies that
2 (b, 20)dt # 0;

. (4) deg(go, Brn(s),0) # 0, where go : R™ — R",go(a) = [, 9(s,a)ds, for every s > r.
Then there is an ag > 0 such that Eq.(1) has at least one w-periodic solution provided
(b + 261) < ag.

Proof Define Lz = —-%, Nz = ——Iigﬂz + g(t,z¢) — p(t). It is easy to see that L is a
Fredholm operator with index 0, and for any subset 0 of X, N is L-compact On §, and
ker L = R". Define the projections Pz = 1 [V z(t)dt for any z € X, Qz = Ly (t )dt for
any z € Z. If we define the linear functional 7 : Z — R by 7(2) = (a, 2 [ 2(t)dt), then

ImL C ker~.
Since
1 [ 9*F(z)
—_ = = t
ey =2 [“INa@iae = [*| 508+ otz - (0)] 4
2
—/ O @) ;a4 L /[gtzt|dt+ / (t)ldt
<blje|| + — /|gtzt Jdt + — / (t)ldt,
and

- (a, /0 Y N2(1)dt) = (a, /0 “ 4(t, z)dt),

from condition(2), we can see
| [Nzl < y(N2) + aaliz|| + b1,

where ay = b+¢el,8y = 1 [ |p(t)|dt + % [’ B(t)dt

Define &z = 1 [ g(t,z;)dt = QNz(t), we know that

1 e 1 v

Bels == [ glt, 20)dt < (22) +ellel] + - [~ B(e)e
w Jo w Jo
=7(®2) + aafjz]| + B,

where a; = €l,8, = 1 [V B(t)dt.
For every possible solution of the following equation

(1-2)QNz+AQ®z=QNz =0,

ie., [y g(t,2¢)dt = 0, from condition(3), there is a number o € [0,w), such that [z(o)| < r.
Since Pz is constant value function, ||Pz|| = |Pz(o)},|z(0)| = |[Pz(s) + (I - P)z(ag)| >
|Pz(a)| — |(I — P)z(o)|, we obtain

I1Pz]| < |2(o)] + (T = P)z(o)| < +[|( - P)z]}.
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Now we consider the equation Lz = ®z. From ImL = kerQ,® = QN, we know that
Lz = ®z is equivalent to the following two equations

QNz =0, Lz = (I - Q)QNz =0,

i.e.,QNz = 0 and z € ker L, from condition(3), we can see Lz # ¥z, for z € ker LNdBx(s)
and s > r. Since ImQ = ker L = R"™, we define the isomorphism J = I : Im@Q — ker L,
from proposition I1.12 in [7] and condition(4), we have

|d[(L, ®), Bx(s)]| = | deg(JQN, Bx(s) Nker L,0)| = | deg(go, Br~(s),0)| # 0,

where s > r. It is obvious that lemma 1(1) is satisfied. From the above statements, all of
the conditions of lemma 1 are hold. Thus there exists a constant ag > 0 such that Eq.(1)
has at least one w-periodic solution provided (b + €l) < ap. Theorem 1 is proved.

Corollary If we replace condition(4) in theorem 1 with the following:

There exists a function V(z) € C'(R™, R), limj,|_,o V(2) = 00, such that gradV(z) #
0, and (gradV(z), [; g(t,z:)dt) > 0 for |z| > r.

Then the conclusion of Theorem 1 remains valid.

Proof It is only necessary to prove deg(go, Bre(s),0) # 0, for s > r. In fact, from
condition(3) of theorem 1, we can see QNz = [" g(t,z;)dt # 0 for z € R™ and |z| > 7.
We define H(r,z) = (1 — 7)QN=z + rgradV(z),r € [0,1], then (gradV(z), H(7,z)) > 0
for € Bpa(s). From the homotopy invariance of degree and Theorem 6.3 in [8], we have
deg(go, Brr(s),0) = deg(gradV, Bp=(s),0) = 1.

Example Consider the equation

r 0 0 . _ ¢ int — ¢
z+ ————-—,(-1%5)7 +€/;oo e®z,(0)do exp(/_Oo e®z,(0)d0) - e(s1nt2 o8 )exp(sm 5 cos )
gcost 0t (2)
= e — sint,
V(1 + sint?)3
we choose @ = 1,b = ¢ > 0, F(z) = ev1+ 22, p(t) = —*———(1‘:‘{522)3 —sint, g(t,p) =

0 o H sin t—cos sin t—cos
3 easo(g)dgef-“’e w8 _ we T B(t) = €|sint — costle T we can
easily see all of conditions of theorem 1 are satisfied, so Eq.(2) has at least one 27-periodic
solution. In fact, z(t) = sint is an obvious 27-periodic solution of Eq.(2).

Remark Inthe above example, the functional g(¢, ¢) doesn’t hold the following condition:
there exist constants ¢, 8 > 0 such that |g(t, ¢)| < €|p|n+8. So the results in [4] are invalid
to the equations with exponential function.
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