A Note on AP-Injective Rings *

XIAO Guang-shi¹, YIN Xiao-bin², TONG Wen-ting¹

- (1. Dept. of Math., Nanjing University, Jiangsu 210093, China;
- 2. College of Math. & Computer Science, Anhui Normal University, Wuhu 241000, China)

Abstract: The purpose of this paper is to study the following two questions on AP-injective rings: (1) R is a regular ring if and only if R is a left PP-ring and R is left AP-injective; (2) Let R be a right AP-injective ring. Then R is self-injective if and only if R is weakly injective. Hence we get some new results of P-injective rings.

Key words: AP-injective rings; weakly injective rings; PP-rings.

Classification: AMS(2000) 16D50,16E40/CLC number: O153.3

Document code: A **Article ID:** 1000-341X(2003)02-0211-06

1. Introduction

Throughout this paper, R denotes an associative ring with identity and all modules are unitary. For any nonempty subset X of a ring R, r(X) and l(X) are reserved for the right annihilator of X and the left annihilator of X respectively. From Page and Zhou (cf.[1]), a ring R is called right AP-injective if for any $(0 \neq) a \in R$ there exists a left ideal X_a of R such that $lr(a) = Ra \oplus X_a$. Similarly, we have the conceptions of left AP-injective rings. It is well known that R is right P-injective if and only if lr(a) = Ra, for any $a \in R$ (cf. [2]). Hence P-injective is AP-injective, but AP-injective rings need not be GP-injective rings ([1], Example 1.5), also not be P-injective rings. Following [3], Ring R is called a left (resp right) PP-ring if for any $a \in R$, Ra(aR) is projective; R is said to be a left (resp right) GPP-ring if for any $a \in R$, there exists a positive integer m such that $Ra^m(a^mR)$ is a projective R-module. In [4], Xue Wei Ming prove that R is regular if and only if R is left P-injective, left PP-ring. Recently, Professor Chen and Ding have prove that R is a regular ring if and only if R is a PP-ring and RR is GP-injective (cf. [5]). In the meantime, they obtained a ring which is left P-injective, right PP-ring is not regular. This paper we will prove a more detailed result that R is a regular ring if and only if R is a left AP-injective, left PP-ring. Whence, we have the conclusion that if R is a right PP-ring,

Biography: XIAO Guang-shi (1976-), Ph.D.

^{*}Received date: 2000-11-24

Foundtion item: Supported by the NNSF of China (10071035) and the Foundation of the Education Committee of Anhui Province (2003kj166).

then R is a left AP-injective ring if and only if R is a left P-injective ring if and only if R is regular. In [6], a module M is said to satisfy (C_2) if for any two submodules X and Y of M with X is a direct summand of M and $Y \cong X$, we have Y is a direct summand of M. Here we show that for a left AP-injective ring, if $Re \cap Rf = 0$ with $e^2 = e$, $f^2 = f$ are in R, then there exists $g^2 = g \in R$ such that $Re \oplus Rf = Rg$ by the C_2 condition.

2. PP-rings

Lemma 2.1 Let R be a left PP-ring. If R is left AP-injective, then R is regular.

Proof For any $a \in R$, we have a short exact sequence

$$0 \to l(a) \to R \to Ra \to 0.$$

Where $\varphi: R \to Ra; r \mid \to ra$. Since R is left PP-ring, so Ra is projective. Then there exists $L \leq_R R$ such that $RR = l(a) \oplus L$, so l(a) = Re with $e^2 = e \in R$. We have rl(a) = r(Re) = (1 - e)R. Denotes f = 1 - e, then rl(a) = fR, $f^2 = f \in R$. Inasmuch as $a \in rl(a)$, so a = fa. But R is left AP-injective ring, there exists $X_a \leq R_R$ such that

$$rl(a) = aR \oplus X_a$$
.

So f = ar + x with $r \in R, x \in X_a$, then

$$xa = fa - ara = a - ara = a(1 - ra) \in aR \cap X_a = 0.$$

Hence a = ara, R is regular.

Corollary 2.2 Let R be a left PP-ring. If R is a left AP-injetive ring, then R is a right PP-ring.

Proof By Lemma 2.1, R is regular. For any $a \in R$, we have $e^2 = e \in R$ such that aR = eR. Hence $aR \oplus (1 - e)R = R_R$, and aR is projective. R is right PP-ring.

Theorem 2.3 R is a regular ring if and only if R is a left AP-injective, left PP-ring.

Proof By Lemma 2.1, R is regular. Converse, since R is regular, Ra = Rf with $f^2 = f \in R$ for any $a \in R$, so R is left PP-ring. Likewise, aR = eR with $e^2 = e \in R$,

$$aR = eR = rl(eR) = rl(aR) = rl(a),$$

R is left AP-injective. \Box

Remark As the proof in Lemma 2.1, we have the same result for a right AP-injective, right PP-ring. Whence, for a left PP-ring, R is left AP-injective if and only if R is regular.

Ring R is π -regular ring if for any $a \in R$, there exist $b \in R$ and positive integer m such that $a^m = a^m b a^m$. Clearly, regular rings are π -regular rings, but π -regular rings need not be regular rings as the following example.

Example 2.4 Let

$$R=\left(egin{array}{cc} Z_2 & Z_2 \ 0 & Z_2 \end{array}
ight)=\left(egin{array}{cc} a & b \ 0 & c \end{array}
ight), \;\; a,b,c\in Z_2.$$

R is π -regular, but since $J(R) = R = \begin{pmatrix} Z_2 & Z_2 \\ 0 & Z_2 \end{pmatrix} \neq 0$, so R is not regular.

In [7], we have the conclusion that for a right AP-injective ring, if R is a right GPP-ring, then R is a π -regular ring and R is a left GPP-ring. Of course, we have the similar conclusion, i.e. if R is a left AP-injective, left GPP-ring then R is a π -regular ring and R is a right GPP-ring as the following Proposition

Proposition 2.5 Let R be a left AP-injective ring. If R is a left GPP-ring, then R is π -regular.

Proof For any $a \in R$, there exists a positive integer m such that Ra^m is projective. So we have a short exact sequence

$$0 \to l(a^m) \to R \to Ra^m \to 0.$$

Where $\varphi: R \to Ra^m$; $r \mid \to ra^m$. Since R is left GPP-ring, so Ra^m is projective. Then there exists $L \leq_R R$ such that $R = l(a^m) \oplus L$, so $l(a^m) = Re$ with $e^2 = e \in R$. We have $rl(a^m) = r(Re) = (1 - e)R$, and $ea^m = 0$. Inasmuch as R is left AP-injective ring, there exists $X_{a^m} \leq R_R$ such that

$$rl(a^m) = a^m R \oplus X_{a^m}.$$

So $1 - e = a^m r + x$ with $r \in R, x \in X_{a^m}$, then

$$xa^m = (1-e)a^m - a^m ra^m = a^m (1-ra^m) \in a^m R \cap X_{a^m} = 0.$$

Hence $a^m = a^m r a^m$, R is π -regular.

Corollary 2.6 Let R be a left AP-injective ring. If R is a left GPP-ring, then R is a right GPP-ring.

R is called a Baer ring if the right annihilator of every nonempty subset of R is generated by an idempotent (cf.[8]).

Proposition 2.7 Let R be a left AP-injective ring. If R is Baer ring, then R is regular ring.

Proof For any $a \in R$, since $\emptyset \neq l(a) \subseteq R$, and R is Baer ring, then rl(a) = eR with $e^2 = e \in R$. So a = ea. But R is left AP-injective, then

$$aR \oplus X_a = rl(a) = eR, \quad X_a < R_B.$$

Hence there exist $b \in R, x \in X_a$ such that

$$e = ab + x, a = ea = aba + xa, a(1 - ba) = xa \in X_a \cap aR = 0.$$

Whence a = aba, R is regular.

Corollary 2.8 Let R be a left AP-injective ring. If R is Baer ring, then R is left PP-ring and right PP-ring, and R is a right AP-injective ring.

3. Weakly injective rings

Let E(M) is an injective hull of M_R . M is called weakly injective (cf.[9]) if for any finite generated submodule $N_R \subseteq E(M)$, there exists $X_R \cong M$, and $N_R \subseteq X_R \subseteq E(M)$. Clearly, injective rings are weakly injective rings, but the converse need not true (cf.[9]). While, weakly injective rings are injective rings for AP-injective rings as follows

Lemma 3.1 Let R be a right AP-injective ring. If $R_R \leq_e X \cong R_R$, then X = R, where X is right R-module.

Proof Denotes φ as the isomorphism of R_R to X with $\varphi(1) = b \in X$, then $Im\varphi = X = bR$. And $1 \in R \leq_e X$. So there exists $u \in R$, and 1 = bu. Hence $R_R = 1R = buR$, and r(u) = 0. In fact, if ur = 0, then bur = 0, r = 1r = bur = 0. We have r(u) = 0. i.e. R = lr(u). And R is right AP-injective ring, so

$$lr(u) = Ru \oplus X_u, X_u \leq_R R.$$

Hence $R = Ru \oplus X_u$, so there exist $v \in R, x \in X_u$ such that

$$1 = vu + x$$
, $u = uvu + ux$, $ux = (1 - uv)u \in X_u \cap Ru = 0$,

u=uvu. Let $e=uv\in R$, so $e^2=e$, and uR=eR. Then we have R=buR=beR, but X=bR=b(eR+(1-e)R)=beR+b(1-e)R. If $x\in beR\cap b(1-e)R$, then there exist $r_1,r_2\in R$ such that $x=ber_1=b(1-e)r_2$, so $\varphi^{-1}(x)=er_1=(1-e)r_2$, and since $er_1=e(1-e)r_2=0$, i.e. x=0, so $X=bR=beR\oplus b(1-e)R$. And $R_R\leq_e X$, R=beR, whence b(1-e)R=0, X=beR=R. \square

Theorem 3.2 Ring R is right self-injective if and only if R is right AP-injective and R_R is weakly injective.

Proof We need only to prove $E(R_R) \subseteq R$. For any $a \in E(R_R)$, since $R + aR \subseteq E(R_R)$ and R_R is weakly injective, then there exists $X \leq E(R_R)$ such that $R + aR \leq X$ and $X \cong R$. Since R_R is right AP-injective, by Lemma 3.1, $X = R_R$. Hence $R = E(R_R)$. R is right self-injective. \square

Remark We have the conclusion that if $_RR \leq_e X \cong_R R$, then $_RX = R$ for a left AP-injective as the proof in Lemma 3.1, so R is a left injective ring if and only if R is a left AP-injective, weakly injective ring.

Proposition 3.3 Let R be a left AP-injective ring, then

- (1) If $e^2 = e \in R$, $\varphi : Re \to Ra$ is a left R-isomorphism, then there exists $f^2 = f \in R$ such that Ra = Rf.
- (2) If $e^2 = e \in R$, $f^2 = f \in R$ and $Re \cap Rf = 0$, then there exists $g^2 = g \in R$ such that $Re \oplus Rf = Rg$.

Proof (1). Let $\varphi(e) = b$, then $Ra = Im\varphi = Rb$. Since

$$\varphi: Re \to R\varphi(e); re \mid \to r\varphi(e)$$

is R-isomorphic, so $l(e) = l(\varphi(e)) = l(b)$. Hence $b \in rl(b) = rl(e) = rl(eR) = r(R(1-e)) = eR$, b = eb. But R is left AP-injective, so

$$rl(b) = bR \oplus X_b, X_b \leq R_R.$$

Then e = bd + x with $d \in R, x \in X_b$. Hence we have b = eb = bdb + xb, and

$$xb = b - bdb = b(1 - db) \in bR \cap X_b = 0.$$

Whence b = bdb. Let f = db, then Ra = Rb = Rf.

(2). By the supposition, Re is a direct summand of R, there exists $L_1 \leq_R R$ such that $RR = Re \oplus L_1$. Whence

$$Re \oplus Rf = (Re \oplus Rf) \cap R = (Re \oplus Rf) \cap (Re \oplus L_1) = Re \oplus ((Re \oplus Rf) \cap L_1).$$

Then $Rf \cong (Re \oplus Rf)/Re \cong (Re \oplus Rf) \cap L_1$. By (1), $(Re \oplus Rf) \cap L_1$ is generated by an idempotent of RR. So there exists $L_2 \leq_R R$ such that

$$((Re \oplus Rf) \cap L_1) \oplus L_2 =_R R,$$

$$L_1 = L_1 \cap R = L_1 \cap (((Re \oplus Rf) \cap L_1) \oplus L_2) = ((Re \oplus Rf) \cap L_1) \oplus (L_1 \cap L_2).$$

Hence

$$RR = Re \oplus L_1 = Re \oplus ((Re \oplus Rf) \cap L_1) \oplus (L_1 \cap L_2) = Re \oplus Rf \oplus (L_1 \cap L_2),$$

 $Re \oplus Rf$ is a direct summand of R, so there exists $g^2 = g \in R$ such that

$$Re \oplus Rf = Rq.$$

Corollary 3.4 If R is a left AP-injective ring, then R satisfies the condition C_2 .

Proposition 3.5 If R is a left AP-injective ring, for any $a \in R$, then the following conditions are equivalent:

- (1) Ra is projective as a left R-module.
- (2) Ra is a direct summand of RR.
- (3) Ra is P-injective as a left R-module.

Proof (2) \Rightarrow (1) and (2) \Rightarrow (3), obviously. (3) \Rightarrow (2). Since we have left homomorphism

$$f: Ra \rightarrow Ra; ra \mid \rightarrow ra.$$

And Ra is P-injective, then there exists $ba \in Ra$ such that a = f(a) = aba. Let e = ba, then $e^2 = e$ and Ra = Re. Hence Ra is a direct summand of Ra.

$(1)\Rightarrow (2)$. Consider the following short exact sequence

$$0 \to l(a) \to R \to Ra \to 0.$$

Since Ra is projective, there exists $T \cong Ra$, and $RR = l(a) \oplus T$. By Corollary 3.4, R satisfies C_2 ., Ra is a direct summand of R. Then we have complete it. \Box

Acknowledgements The first author would like to thank Professor Zhang Jule for his useful suggestions.

References:

- [1] STANLEY S P, ZHOU Yi-qiang. Generalizations of principally injective rings [J]. J.Algebra, 1998, 206: 706-721.
- [2] NICHOLSON W K, YOUSIF M F. Principally injective rings [J]. J. Algebra, 1995, 174: 77-93.
- [3] HIRANO Y. On generalized PP-rings [J]. Math. J. Okayama Univ., 1983, 25: 7-11.
- [4] XUE Wei-min. On PP-rings [J]. Kobe. J. Math., 1990, 7: 77-80.
- [5] CHEN Jian-long, DING Nan-qing. On regularity of rings [J]. Algebra Colloquium, 2001, 8(3): 267-274.
- [6] MOHAMMED S H, MULLER B J. Continuous and Discrete Modules [M]. London: Cambridge Univ. Press, 1990.
- [7] XIAO Guangshi. A note on AP-injective rings [J]. Journal of Anhui Normal University (Natural Science), 2001, 3: 210-213.
- [8] ZHANG Ju-le. Fully idempotent rings whose every maximal left ideal is an ideal [J]. Chinese Sci.Bull., 1992, 37(13): 1065-1068.
- [9] JAIN S K, LOPEZ-PERMOUTH S R. Rings whose cyclics are essentially embeddable in projective modules [J]. J. Algebra, 1990, 128: 257-269.

关于 AP- 内射环的一个注记

肖光世1, 殷晓斌2, 佟文廷1

(1. 南京大学数学系, 江苏 南京 210093; 2. 安徽师范大学数学与计算机科学学院, 安徽 芜湖 241000)

摘 要:本文的主要目的是讨论 AP-内射环中的两个问题: (1) 环 R 是正则的当且仅当 R 是左 AP-内射的左 PP-环; (2) 如果 R 是左 AP-内射环,那么 R 是内射环当且仅当 R 是弱内射环,因此我们推广了内射环的一些结果,与此同时我们还取得了一些新的结果.

关键词: AP- 内射环; 弱内射环; PP- 环.