The f-width in Locally Convex Spaces *

SONG Wen-hua¹, LIU Guo-fen², HAO Ming-xian³

- (1. Inst. of Appl. Math., Hebei University of Economics, Shijiazhuang 050091, China;
- 2. College of Math. & Infor. Science, Hebei Normal University, Shijiazhuang 050016, China;
- 3. Baoding Vocational and Technology College, Hebei 071051, China)

Abstract: In this paper we extend the width problems in normed space to locally convex space and some results are given.

Key words: f-n-width; S_X .

Classification: AMS(2000) 41A65/CLC number: O174.41

Document code: A Article ID: 1000-341X(2003)02-0225-08

1. Introduction

Let X be a locally convex space, f a function on X, A a subset of X and n an integer with $0 \le n < \infty$. The number

$$d_n(f,A) = \inf_{\dim G = n} \sup_{x \in A} \inf_{g \in G} f(x-g),$$

where the inf is taken over all n-dimensional linear subspaces G of X, is called f-n- width of the subset A.

A n-dimensional subspace G of X is called a best n-dimensional secant of A(with respect to X), if

$$d_n(f,A) = \sup_{x \in A} \inf_{g \in G} f(x-g).$$

Let f be a continuous convex function on X. We assume there exists a continuous bijection $\psi: R_+ \longrightarrow R_+ \quad (R_+ = [0, +\infty))$, such that

$$(F_1) f(\lambda x) = \psi(\lambda) f(x) (\forall \lambda \geq 0, x \in X).$$

If f is a real function, for any r > 0, $x \in X$, let

$$P_r(x) = \inf\{t > 0 : x \in tS_r\},\$$

Foundation item: Supported by Natural Science Foundation of Hebei Province.

Biography: SONG Wen-hua (1956-), male, Ph.D., Professor.

^{*}Received date: 2001-12-24

where $S_r = \{x \in X : f(x) \le r\}$. Obviously, if f is a continuous convex function, and f(0) = 0, for any r > 0, P_r is the Minkowski functional decided by the convex absorbing set S_r , and P_r is continuous positive homogeneitive and sub-additive.

2. Some properties

Lemma 1^[2] Let X be a locally convex space, f a nongative continuous convex function satisfying the condition (F_1) , f(0) = 0, then for any $\lambda, r > 0$, we have $P_r = \lambda P_{\psi(\lambda)r}$.

Remark Given $\forall \alpha, r > 0$, we have $P_r = \alpha P_{\psi(\alpha)r}$, also $\forall \lambda > 0$, suppose $\alpha = \psi^{-1}(\lambda/r)$, so we have $P_r = \psi^{-1}(\lambda/r)P_{\lambda}$.

Lemma 2 Let X be locally convex space, f a continuous convex function satisfying the condition (F_1) , f(0) = 0, and there exists an $x_0 \in X$, $f(x_0) > 0$. Where the ψ is the function in (F_1) , then

- 1. $\psi(0) = 0, \psi(1) = 1;$
- 2. ψ is a strictly increasing function on R_+ , so the converse ψ^{-1} exists and is continuous;
 - 3. ψ is a convex function;
 - 4. $\lim \psi(\lambda) = \infty$;
 - 5. $\psi(\lambda)\psi(1/\lambda) = \psi^{-1}(\lambda)\psi^{-1}(1/\lambda) = 1 \ (\lambda > 0).$

Proof 1-4 have been given by [4], so we prove 5 only.

Since f is a non-zero function, there exists an $x_0 \in X$ such that $f(x_0) \neq 0$. For any $\lambda > 0$, such that

$$f(x_0) = f(\lambda \frac{1}{\lambda} x_0) = \psi(\lambda) f(\frac{1}{\lambda} x_0) = \psi(\lambda) \psi(1/\lambda) f(x_0),$$

namely $\psi(\lambda)\psi(1/\lambda) = 1$. Let $\alpha = \psi^{-1}(\lambda), \beta = \psi^{-1}(1/\lambda)$. Then

$$1 = \psi(\alpha)\psi(\beta) = \psi(\alpha)\psi(1/\alpha) \Longrightarrow \psi(1/\alpha) = \psi(\beta)$$
$$\Longrightarrow \beta = 1/\alpha \Longrightarrow \psi^{-1}(\lambda)\psi^{-1}(1/\lambda) = 1.$$

Theorem 3 Let X be a locally convex space, A a subset of X and f a nonnegative continuous and convex function, f(0) = 0, $0 \le n < \infty$, then

- 1. We have $d_n(f, A) = d_n(f, A)$, A is the closed hull of A;
- 2. For $\forall \alpha > 0$, $d_n(f, \alpha A) = \psi(\alpha)d_n(f, A)$;
- 3. For the circled hull $\tau(A)$ of A, we have $d_n(f,\tau(A))=d_n(f,A)$;
- 4. For the convex hull co(A) of A, we have $d_n(f, co(A)) = d_n(f, A)$;
- 5. We have $d_0(f,A) \geq d_1(f,A) \geq \cdots \geq d_n(f,A) \geq \cdots$;
- 6. If A is compact, we have $\lim_{n\to\infty} d_n(f,A) = 0$;
- 7. If dim(span A) = n, we have $d_n(f, A) = d_{n+1}(f, A) = \cdots = 0$.

Proof We ignore the proof of 1-5.

6. Let A be compact and let $\varepsilon > 0$ be arbitrary. Take an $f - \varepsilon$ -net $\{x_1, \dots x_N\}$ for A and let $G = \text{span}\{x_1, \dots x_N\}$. then for every $x \in A$ we have

$$\inf_{g \in G} f(x - g) \leq \min_{1 \leq i \leq N} f(x - x_i) < \varepsilon,$$

hence

$$\inf_{\dim G=N} \sup_{x\in A} \inf_{g\in G} f(x-x_i) \leq \varepsilon.$$

whence, by 5, there follows 6.

7. Since

$$d_n(f,A,X) = \inf_{\dim G = n} \sup_{x \in A} \inf_{g \in G} f(x-g) \le \sup_{x \in \operatorname{span} A} \inf_{g \in G} f(x-g) = 0.$$

which, taking into account 5, completes the proof.

In order to get the uniformity of f and P_r on the width, we give the following lemma.

Lemma 4 Let f be a continuous convex function, and $f(0) = 0 \le f(x)$, for every r > 0, we have

- 1. $f(x) \leq r \iff P_r(x) \leq 1$;
- 2. $f(x) = r \iff P_r(x) = 1;$
- 3. $f(x) \ge r \iff P_r(x) \ge 1$.

3. An application

Let X be a locally convex space and G a subspace of X, note

$$P_{f,G}(x) = \{g \in G : f(x-g) = \inf f(x-y), \forall y \in G\},\$$

in the case when this will lead to no confusion, we shall use $P_f(x)$.

Remark Suppose $0 \in P_f(x)$, for every $\alpha > 0$ and every $g \in G$, satisfying

$$f(\alpha x) = \psi(\alpha)f(x) \le \psi(\alpha)f(x-g) = f(\alpha x - \alpha g) \le f(\alpha x - g_1) \quad (g_1 = \alpha g \in G)$$

hence $0 \in P_f(\alpha x)$. We use the notation $x \perp G$ for $0 \in P_f(x)$.

In order to get the following results, assume

(F₂)
$$f$$
 satisfies (F_1) , and $f(-x) = f(x)$.

Lemma 5 Let X be a locally convex space and G_1, G_2 two linear subspaces of X such that

$$\dim G_1 < \infty, \dim G_1 < \dim G_2$$

f is a function on X satisfying (F_2) , then there exists a $y \in G_2 \setminus \{0\}$, such that $y \perp G_1$.

Proof Obviously we may assume, without loss of generality, that we have

$$\dim G_1 = n, \quad \dim G_2 = n+1.$$

Let $X_1 = \text{span}\{G_1, G_2\}$ = the linear subspace of X spanned by $G_1 \cup G_2$. As we all know that f and P_r have the same approximation properties^[4], then we consider P_r in instead of f.

Since X_1 is a finite dimensional subspace of X, there exists a norm $\|\cdot\|_*$ on X_1 . For every $\varepsilon > 0$, let

$$P_r(x) + \varepsilon \parallel x \parallel_* = \parallel x \parallel_{\varepsilon} \quad (\varepsilon > 0).$$

then $\|*\|_{\epsilon}$ is a norm on X_1 . Subsequently we prove the lemma is right for P_r .

By Iven Singer[2], for $\|\cdot\|_{\varepsilon}$, there exists a $y \in G_2 \setminus \{0\}$, such that $y \perp G_1$. Then $\beta y \perp G_1$, for any $\beta > 0$.

Take $\varepsilon = \frac{1}{n}$, then there exist $y_n \in G_2 \setminus \{0\}$, such that $||y_n||_* = 1$, and for $||\cdot||_{\frac{1}{n}}$, $y_n \perp G_1$. Since X_1 is finite dimensional. Choosing a convergent subsequence, we can assume $y_n \longrightarrow y$, then $||y||_* = 1$, and $y \neq 0$. Since G_2 is finite dimensional, G_2 is closed. So we have $y \in G_2$, for every $g \in G_1$, since

$$\| y_n \|_{\frac{1}{n}} = P_r(y_n) + \frac{1}{n} \| y_n \|_{*} = P_r(y_n) + \frac{1}{n}$$

$$\leq \| y_n - g \|_{\frac{1}{n}} = P_r(y_n - g) + \frac{1}{n} \| y_n - g \|_{*},$$

let $n \longrightarrow \infty$, we have

$$P_r(y) \leq P_r(y-g).$$

Namely $y \perp G_1$, which completes the proof of Lemma 5.

Theorem 6 Let X be a locally convex space and X_{n+1} a n+1-dimensional subspace of X, f satisfies (F_2) , and when $x \in X_{n+1} \setminus \{0\}$, $f(x) \neq 0$, we have

$$d_n(f, S_{X_{n+1}}) = 1.$$

Proof Let G be an n-dimensional subspace of X. By Lemma 10, let $G_1 = G$, $G_2 = X_{n+1}$, then there exists a $y_0 \in X_{n+1} \setminus \{0\}$, such that $y_0 \perp G$, whence, for every $g \in G$, such that

$$f(\frac{y_0}{\psi^{-1}(f(y_0))}-g)=\frac{1}{f(y_0)}f(y_0-\psi^{-1}(f(y_0))g)\geq \frac{1}{f(y_0)}f(y_0)=1.$$

Hence

$$1 \geq \sup_{m{x} \in S_{X_{n+1}}} \inf_{g \in G} f(m{x} - g) \geq \inf_{g \in G} f(rac{y_0}{m{\psi}^{-1}(f(y_0))} - g) = 1,$$

namely

$$\sup_{x \in S_{X_{n+1}}} \inf_{g \in G} f(x-g) = 1.$$

Whence, since G was an arbitrary n-dimensional subspace of X, which completes the proof of Theorem 6.

4. Extension of the application

First we assume that ψ has the condition $f(\lambda x) = \psi(|\lambda|)f(x)$. If there is an $x \in X$ such that f(x) > 0, by Lemma 2, for any s, t > 0, we have $\psi(st) = \psi(s)\psi(t)$.

Lemma 7 Let X be a locally convex space and f a function on X satisfying (F_1) , 0 = f(0) < f(x) $(x \neq 0)$, $S_X = \{x : f(x) < 1\}$ is bounded. For any linear nonzero continuous functional φ , there exists a r > 0 such that

$$\sup_{x\neq 0}\frac{\psi(r|\varphi(x)|)}{f(x)}=1.$$

Proof Since $D = \{x : |\varphi(x)| < 1\}$ is open and S_X bounded, there exists a M > 0 such that $S_X \subseteq MD$. So we have $|\varphi(x)| \le M$ when $f(x) \le 1$. Put

$$\sup_{f(x)=1}\frac{\psi(|\varphi(x)|)}{f(x)}=\rho,$$

obviously, $0 < \rho < +\infty$. For any $x \neq 0$, there exist a $\lambda > 0$ such that $f(\lambda x) = \psi(\lambda)f(x) = 1$. (We can assume $\lambda = \psi^{-1}(1/f(x))$) Then for any $x \neq 0$, we have

$$\frac{\psi(|\varphi(x)|)}{f(x)} = \frac{\psi(\lambda^{-1}|\varphi(\lambda x)|)}{f(\lambda^{-1}(\lambda x))} = \frac{\psi(\lambda^{-1})\psi(|\varphi(\lambda x)|)}{\psi(\lambda^{-1})f(\lambda x)} \leq \rho.$$

Put

$$\sup_{x\neq 0}\frac{\psi(|\varphi(x)|)}{f(x)}=\frac{\psi(|\varphi(x)|)}{f(x)}=\rho_0=\psi(r^{-1})=1/\psi(r).$$

Let $r^{-1} = \psi^{-1}(\rho_0)$ Hence

$$\sup_{x\neq 0}\frac{\psi(r|\varphi(x)|)}{f(x)}=\sup_{x\neq 0}\frac{\psi(r)\psi(|\varphi(x)|)}{f(x)}=1.$$

In order to get more results, we define f-distance in locally convex space X. Given $x, y \in X$, the distance between x and y is defined by $\rho_f(x, y) = f(x - y)$. If $H = \{x : \varphi(x) = \alpha\}$ is a hyperplane, the distance from x to H is defined by $\rho_f(x, H) = \inf_{y \in H} f(x - y)$. Then we have

Lemma 8 X, f, φ are same to that of lemma 7. $H = \{x : \varphi(x) = \alpha\}$ is a hyperplane. Assume $\sup_{x \neq 0} \frac{\psi(|\varphi(x)|)}{f(x)} = \beta > 0$. For any $x \in X$, we have

$$ho_f(x,H) = rac{1}{eta} \psi(|arphi(x) - lpha|).$$

Proof For any $y \in H$, we have

$$f(x-y) \geq rac{1}{eta} \psi(|arphi(x-y)|) = rac{1}{eta} \psi(|arphi(x)-lpha|),$$

— 229 **—**

whence $\rho_f(x, H) \ge \frac{1}{\beta} \psi(|\varphi(x) - \alpha|)$. On the other hand, if $0 < \lambda < \beta$, there exists a $z \in X$ such that

$$\psi(|\varphi(z)|) > (\beta - \varepsilon)f(z).$$

Putting

$$y=x-\frac{\varphi(x)-\alpha}{\varphi(z)}z,$$

we obtain $\psi(|\varphi(x) - \alpha|) > (\beta - \varepsilon)f(x - y)$, hence

$$f(x-y) = \frac{\psi(|\varphi(x)-\alpha|)}{\beta-\varepsilon}.$$

Since $\varepsilon > 0$ was arbitrary and $y \in H$, it follows that we have $\rho_f(x, H) \leq \frac{1}{\beta} \psi(|\varphi(x) - \alpha|)$, which, together with the opposite inequality shown above, complete the proof of lemma 8.

In locally convex space, if A is a bounded closed circle convex set, obviously, for any $\lambda > 0$, λA is also the same set to A. We can obtain $\partial(\lambda A) = \lambda \partial A$. $x \in \partial A$. There exist two sequences $x_n \in A$, $y_n \notin A$, such that $x_n \longrightarrow x$, $y_n \longrightarrow y$, obviously, $\lambda x_n \longrightarrow \lambda x$, $\lambda y_n \longrightarrow \lambda y$, and $\{\lambda x_n\} \in \lambda A$, $\{\lambda y_n\} \notin \lambda A$. Then we have $\lambda x \in \partial(\lambda A)$, i.e. $\partial(\lambda A) \supseteq \lambda \partial A$. hence $\partial A \supseteq \partial(\lambda A)/\lambda$, whence $\partial(\lambda A) \subseteq \lambda \partial A$. Obviously $\partial(\lambda A) = \lambda \partial A$.

Lemma 9 Let X be a locally convex space, f a continuous convex functional on X satisfying (F_1) , 0 = f(0) < f(x) ($x \neq 0$) and A a bounded closed circled convex set, $0 \in IntA$. Then $S_X \subseteq A$ if and only if $f(x) \geq 1$ for any $x \in \partial A$.

Proof Necessity, suppose $S_X \subseteq A$. If there exists an $x \in \partial A$ such that f(x) < 1, obviously, $x \in IntS_X$ is in contradiction with $S_X \subseteq A$. So for any $x \in \partial A$, we have $f(x) \ge 1$.

Sufficiency, suppose 0 < f(x) < 1, $0 \in IntA$. There exist $0 < \lambda < 1$ such that $\lambda x \in A$. Putting $\lambda_0 = \sup\{0 < \lambda \le 1, \lambda x \in A\}$, by closure of A, we can know $\lambda_0 x \in A$. If $\lambda_0 = 1$, $x \in A$. If $0 < \lambda_0 < 1$, since there exist $\lambda_n > \lambda_0$ such that $\lambda_n \longrightarrow \lambda_0$, $\lambda_n x \notin A$, we have $\lambda_0 x \in \partial A$. It follows that $f(\lambda_0 x) = \psi(\lambda_0) f(x) < 1$, which leads to a contradiction. Then we have $\{x : f(x) < 1\} \subseteq A$, whence, $\overline{S_X} \subseteq A$

Lemma 10 X, f and A are same to that of Lemma 9, and there exists a $\lambda_0 > 0$ such that $\lambda_0 S_X \subseteq A$. Then we have

$$\sup_{\lambda>0,\lambda S_X\subset A}\psi(\lambda)=\inf_{x\in\partial A}f(x).$$

Proof Let $\lambda > 0$ such that $\lambda S_X \subseteq A$, whence $S_X \subseteq \frac{1}{\lambda}A$. By Lemma 9, for any $x \in \partial A$, we have $f(x/\lambda) \ge 1$, whence $f(x) \ge \psi(\lambda)$. Then we have

$$\sup_{\lambda>0, \lambda S_X\subset A} \psi(\lambda) \leq \inf_{x\in\partial A} f(x).$$

On the other hand, putting $\inf_{x \in \partial A} f(x) = \rho > 0$, for any $0 < \varepsilon < \rho$, there exists an $x \in \partial A$ such that

$$f(x) - \varepsilon \le \inf_{y \in \partial A} f(y).$$

$$-230$$
 $-$

There exists a $\bar{\lambda} > 0$ such that $\psi(\bar{\lambda}) = f(x) - \varepsilon$. So for any $y \in \partial A$, we have $\psi(\bar{\lambda}) \leq f(y)$, whence $f(y/\bar{\lambda}) \geq 1$. Then for any $z \in \partial(\frac{1}{\lambda}A)$, we have $f(z) \geq 1$. By Lemma 9, we have $\bar{\lambda}S_X \subseteq A$, hence

$$\sup_{\lambda>0,\lambda S_X\subset A} \psi(\lambda) \geq \psi(ar{\lambda}) = f(x) - arepsilon \geq \inf_{y\in\partial A} f(y) - arepsilon,$$

which, together with the opposition inequality, complete the proof of Lemma 10. Noting $\inf_{x \in \partial A} f(x)$ in Lemma 10 as $\psi(r(A))$, we have

$$r(A)S_X \subseteq A$$
.

Remark When X is a finite dimension space, the inf of $\inf_{x \in \partial A} f(x)$ in Lemma 10 can be obtained, hence $\partial(r(A)S_X) \cap \partial A \neq \emptyset$, and given $0 \in IntA$, there must exist $\lambda_0 > 0$ such that $\lambda_0 S_X \subseteq A$.

Theorem 11 Let X_{n+1} be an n+1-dimensional locally convex space, f a continuous convex functional on X_{n+1} satisfying (F_1) , 0 = f(0) < f(x) $(x \neq 0)$, and A a bounded closed circled convex set such that $0 \in \text{Int } A$. Then we have

$$d_n(A, X_{n+1}) = \psi(r(A)).$$

Proof By the remark of Lemma 10, there exists an $x \in \partial(r(A)S_X) \cap \partial A$. Since $x \in \partial A$, there exists a functional $\varphi \in X_{n+1}^* \setminus \{0\}$ such that

$$arphi(x) = \sup_{y \in A} arphi(y).$$

Put $\sup_{f(x)\neq 0} \frac{\psi(|\varphi(x)|)}{f(x)} = \beta$, and $G = \{z \in X_{n+1} : \varphi(z) = 0\}$, obviously, G is a hyperplane. By Lemma 8, we have

$$\rho_f(x,G) = \sup_{y \in A} \rho_f(y,G) = \sup_{y \in A} \inf_{g \in G} f(y-g),$$

hence

$$\beta f(x) \geq \psi(|\varphi(x)|) = \sup_{y \in A} \psi(|\varphi(y)|) \geq \sup_{y \in r(A)S_{X_{n+1}}} \psi(|\varphi(y)|) = \psi(r(A)) = \beta f(x),$$

hence $\rho_f(x,G) = \psi(r(A)) = \sup_{y \in A} \inf_{g \in G} f(y-g)$, then we have

$$d_n(A, X_{n+1}) \leq \psi(r(A)).$$

On the other hand, for any n-dimensional subspace G', there exists a $y \in X_{n+1} \setminus \{0\}$ such that $y \perp G'$. We have

$$\psi(r(A)) = \sup_{y \in r(A)S_{X_{n+1}}} \inf_{g' \in G'} f(y - g').$$

$$-231$$
 $-$

Since n-dimensional subspace G' is arbitrary, we have

$$d_n(A, X_{n+1}) \geq \psi(r(A)).$$

This, together with the opposite inequality shown above, proves the theorem.

References:

- [1] BORSUK K. Drei Sätzeüber die n-dimensionale euklidische Sphare [J]. Fund. Math., 1933, 20: 177-191.
- [2] SINGER I. Best Approximation in Normed Linear Space by Elements of Linear Subspace [M]. Springer-Verlag, Berlin, Heidelberg, New York, 1970.
- [3] PAI D V, GOVINDARAJULU P. On set-valued f-projection and f-farthest point mapping [J]. J. Approx. Theory, 1984, 42: 4-13.
- [4] SONG Wen-hua. The approximation on locally convex spaces [J]. Approximation Theory and Its Application, 1994, 10(1): 26-33.

局部凸空间中的 f- 宽度

宋文华1,刘国芬2,郝明贤3

- (1. 河北经贸大学应用数学研究所, 河北 石家庄 050091;
- 2. 河北师范大学数学与信息科学学院, 河北 石家庄 050016;
- 3. 保定职业技术学院, 河北 保定 071051)

摘要: 本文将赋范空间中的宽度推广到了局部凸空间,并得到了一些相应的结论.

关键词: f-n- 宽度; S_x .