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1. Introduction

Let X be a locally convex space, f a function on X, A a subset of X and n an integer
with 0 < n < co. The number
d,.(f,A) = inf sup inf - g),
(f,4) AiCan ook 66 f(z - g)
where the inf is taken over all n-dimensional linear subspaces G of X, is called f-n- width
of the subset A .
A n-dimensional subspace G of X is called a best n-dimensional secant of A(with

respect to X), if
d.(f,A) = sup inf f(z - g).
z€A9€EG

Let f be a continuous convex function on X. We assume there exists a continuous
bijection ¥ : Ry — R; (R4 = [0,400)), such that
(F:) fO=) = $(Nf(z) (VA2 0,z € X).
If f is a real function,for any » > 0,z € X, let

P.(z) =inf{t > 0:z € tS,},
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where S, = {z € X : f(z) < r}. Obviously, if f is a continuous convex function, and
f(0) =0, for any r > 0, P, is the Minkowski functional decided by the convex absorbing
set S,, and P, is continuous positive homogeneitive and sub-additive.

2. Some properties

Lemma 12 Let X bea locally convex space, f a nongative continuous convex function
satisfying the condition (F1), f(0) = 0, then for any A,r > 0, we have P, = AP ,),.

Remark Given Va,r > 0, we have P, = aPy (.-, also YA > 0, suppose a = Y~1(A/r), so
we have P, = ¢ ~}(A/r)P, .

Lergrna 2 Let X be locally convex space, f a continuous convex function satisfying the
ition (F1), f(0) = 0, and there exists an zy € X, f(zy) > 0. Where the v is the
function in (Fy), then

L $(0) = 0,9(1) = 1;

2. ¢ is a strictly increasing function on R, , so the converse ™! exists and is contin-
uous;

con

3. ¢ is a convex function;

4. /\Iim P(A) = o0;

5. 9(AW(1/A) = 7 (NP7 (1/A) =1 (X > 0).
Proof 1-4 have been given by [4], so we prove 5 only.

Since f is a non-zero function,there exists an #y € X such that f(zy) # 0. For any
A > 0, such that

1

f(an) = FA320) = PN (5 20) = S/ (20),

namely Y(A)(1/A) = 1. Let a = ¢ '(A),8 = ¥~ }(1/A). Then

1= ¢(a)P(B) = ¥(a)b(l/a) == ¢(1/a) = P(B)
== f=1/a= ¢ '\ (1/A) = L

Theorem 3 Let X be a locally convex space, A a subset of X and f a nonnegative
continuous and convex function, f(0) = 0,0 < n < oo, then

1. We have d,(f, A) = d.(f, A), A is the closed hull of A;

2. ForVa > 0, d,,(f,aA) = Y(a)d,(f, A);

3. For the circled hull T(A) of A, we have d,(f,7(A)) = d..(f, 4);
4. For the convex hull co(A) of A, we have d,,(f,co(A)) = d,.(f,A);
5. We have dy(f, A) > di(f,A) > --- > d,.(f,A) > -

6. If A is compact, we have nli{l; d.(f,A) =0;

7. If dim(span A) = n, we have d,,(f, A) = d,,41(f,A) = --- = 0.

Proof We ignore the proof of 1-5.
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6. Let A be compact and let ¢ > 0 be arbitrary. Take an f — e—net {z;,---zn} for A
and let G = span{z;,---zn}. then for every z € A we have

inf -¢g) < i T —z;)<eE,
g“e‘cf(”’ g)_lgyanf( )

hence

inf sup inf f(z — z;) <.
dimG=N Ieﬁ prre) H i) <

whence, by 5, there follows 6.
7. Since

= i inf f(z - q) < inf f(z — g) = 0.
d.(f, A, X) (ﬁlgg:nigg;gcf(z g)—zeil;E.A!;EGf(z g)

which, taking into account 5, completes the proof.
In order to get the uniformity of f and P, on the width, we give the following lemma.

Lemma 4 Let f be a continuous convex function, and f(0) = 0 < f(z), for every r > 0,
we have

3. An application

Let X be a locally convex space and G a subspace of X, note

Pro(z) ={9€G: flz —g) = inf f(z — y),Vy € G},
in the case when this will lead to no confusion, we shall use Py(z).

Remark Suppose 0 € P¢(z), for every a > 0 and every g € G, satisfying
flaz) = Y(a)f(z) < Y(a)f(z — g) = flaz — ag) < f(az ~ g1) (91 = ag € G)

hence 0 € Ps(az). We use the notation z L G for 0 € Py(z).
In order to get the following results, assume

(F2) f satisfies (F1), and f(—z) = f(z).

Lenuna 5 Let X be a locally convex space and Gy,G4 two linear subspaces of X such
that
dim G, < 00,dimG; < dim G5,

f is a function on X satisfying (F3), then there exists a y € G2\{0}, such that y L G;.

Proof Obviously we may assume, without loss of generality, that we have

dimG, = n, dimGy =n+1.
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Let X, = span{G;,G2} = the linear subspace of X spanned by G; U G;. As we all
know that f and P, have the same approximation propertiesl¥), then we consider P, in
instead of f.

Since X, is a finite dimensional subspace of X, there exists a norm || - |[|. on X;. For
every € > 0, let

P(z)t+ellzll.=llz] (¢>0)

then || * ||.is a norm on X;. Subsequently we prove the lemma is right for P,.

By Iven Singer[2], for || - ||, there exists a y € G2\{0}, such that y L G;. Then
By L Gy, for any 8 > 0.

Take ¢ = L, then there exist y, € G3\{0}, such that || y, .= 1, and for || - |1,
yn L Gip. Since X7 is finite dimensional. Choosing a convergent subsequence, we can
assume y, — ¥, then || y ||«= 1, and y # 0. Since G is finite dimensional, G2 is closed.
So we have y € G,, for every g € Gy, since

1 1
” Yn ”'l—l - Pr(yn) + ; “ Yn ”*— Pr(yn) + ‘7;

1
Slhyn—glle= Belyn~9) + | yn — g I,

let n — oo, we have
P(y) < Py —9)
Namely y L Gy, which completes the proof of Lemma 5.

Theorem 6 Let X be a locally convex space and X, ;1 a n + 1-dimensional subspace of
X, f satisfies (F3), and when z € X,,11\{0}, f(z) # 0, we have

dn(f) SX,..H ) =1

Proof Let G be an n-dimensional subspace of X. By Lemma 10, let G; = G, G2 = X541,
then there exists a yo € X,,41\{0}, such that y, L G, whence, for every g € G, such that

(e f(}@f(yﬂ =97 (f(w0))9) 2 f(;o)f(yo) = 1.
Hence y
1> ze?ii, 3ggf(z -9)2 ;‘e\gf(m —g) =1,
namely
zezlil,).“ égg f(:.c —e=t

Whence, since G was an arbitrary n—dimensional subspace of X, which completes the
proof of Theorem 6.

4. Extension of the application
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First we assume that 1 has the condition f(Az) = ¥(|]A|)f(z). If thereis an z € X
such that f(z) > 0, by Lemma 2, for any s,t > 0, we have ¥(st) = ¥(s)¥(t).

Lemma 7 Let X be a locally convex space and f a function on X satisfying (Fy),
0 = f(0) < f(z) (z £ 0), Sx = {z : f(=) < 1} is bounded. For any linear nonzero
continuous functional ¢, there exists a r > 0 such that

y{rip(@)) _
e

Proof Since D = {z : |p(z)| < 1} is open and Sx bounded, there exists a M > 0 such
that Sx C M D. So we have |p(z)| < M when f(z) < 1. Put

P(le(2)])

sup —— " = p,

fle)=1 f(z)

obviously, 0 < p < +c0. For any z # 0, there exist a A > 0 such that f(Az) = ¥(A)f(z) =
1.(We can assume XA = ¥~ '(1/f(z))) Then for any z # 0, we have

Y(e)) _ A He(A2)l) _ (A Dd(lp(A2)]) p
f(=) F(A7H(Az)) PAN)f(Az) T

Put
sup 2@ ¥le)) _ Ly e
i P P I

Let r=1 = ¢~ 1(py) Hence

¥(rle(2)]) P(r)y(|p(2)])

sup ————>> = sup

£ f(z) c#£0 f(;c)

In order to get more results, we define f-distance in locally convex space X. Given

z,y € X, the distance between z and y is defined by ps(z,y) = f(z —y). U H = {z:

¢(z) = a} is a hyperplane, the distance from z to H is defined by ps(z, H) = ing f(z—y).
ye

= 1.

Then we have

Lemma 8 X, f, ¢ are same to that of lemma 7. H = {z : ¢(z) = a}is a hyperplane.
Assume sup v Lfiz)m = f > 0. For any ¢ € X, we have
A0

py(a, H) = %Wlw(z) ~ al).

Proof For any y € H. we have

p—

f(z - v) > ~p(e(z - v)]) = j;¢(|so(x> ~ o),

=
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whence ps(z, H) > %¢(|¢p(z) — a|). On the other hand, if 0 < A < 3, there exists a z € X

such that

lle(2))) > (B - €)f(2).
Putting

., Pz —a
y= (2)
we obtain ¢(|p(z) — a|) > (B8 — €)f(z — y), hence
_ ¥lp(z) — al)
flz-y) = — 5.

Since ¢ > 0 was arbitrary and y € H, it follows that we have ps(z, H) < %Q,b(]gp(z) - al),
which, together with the opposite inequality shown above, complete the proof of lemma
8.

In locally convex space, if A is a bounded closed circle convex set, obviously, for any
A > 0, AA is also the same set to A. We can obtain §(AA) = AJA. ¢ € OA. There exist
two sequences z,, € A, y,, ¢ A, such that z, — =z, y, — y, obviously,Az,, — Az,
Ayn — Ay, and {Az,} € AA, {Ay,.} ¢ AA. Then we have Az € 9(AA), i.e.0(AA) D A0A.
hence 0A D O(AA)/A, whence (AA) C AJA. Obviously d(AA) = AJA.

Lemuna 9 Let X be a locally convex space, f a continuous convex functional on X
satisfying (F1), 0 = f(0) < f(z) (z # 0) and A a bounded closed circled convex set,
0€ IntA. Then Sy C A if and only If f(z) > 1 for any z € 9 A.

Proof Necessity, suppose Sx C A. If there exists an ¢ € 9A such that f(z) < 1,
obviously, z € IntSx is in contradiction with Sy C A. So for any # € JA, we have
fl#) > 1.

Sufficiency, suppose 0 < f(z) < 1, 0 € IntA. There exist 0 < A < 1 such that Az € A.
Putting Ay = sup{0 < A < 1,Az € A}, by closure of A, we can know Ajz € A. If A; =1,
z € A If0 < Ay < 1, since there exist A,, > A, such that A,, — Ay, A,z € A, we have
Aoz € 0AIt follows that f(Aoz) = ¥(Ay)f(z) < 1, which leads to a contradiction. Then
we have {z : f(z) < 1} C A, whence, Sx C A

Lemma 10 X, f and A are same to that of Lemma 9, and there exists a Ay > 0 such
that \;Sx C A. Then we have

sup  ¢(A) = inf f(z).

A>0ASxCA z€IA

Proof Let A > 0 such that ASy C A, whence Sx C %A. By Lemma 9, for any « € JA,
we have f(z/A) > 1, whence f(z) > 9(A). Then we have

su A} < inf f(=z).
bwsr;g'ﬁ( ) < IGOAf( )

On the other hand, putting iI})fA f(z) = p >0, for any 0 < € < p, there exists an z € 04
T€
such that
f(z) —e < inf f(y).

T yeoA
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There exists a A > 0 such that ¥(1) = f(z) —¢. So for any y € JA, we have P(A) <
f(y),whence f(y/A) > 1. Then for any z € 5(§A), we have f(z) > 1. By Lemma 9, we
have ASx C A, hence

sup  Y(A) > $(A) = f(z) —e > inf f(y) —e,

A>0.ASx CA yEDA
which, together with the opposition inequality, complete the proof of Lemma 10.
Noting il}ij f(z) in Lemma 10 as ¢(r(A)), we have
T€

r(A)Sx C A.

Remark When X is a finite dimension space, the inf of il})fA f(z) in Lemma 10 can be
E4S

obtained, hence 9(r(A)Sx) N 9A # 0, and given 0 € IntA, there must exist Ay > 0 such
that /\()SX Q A.

Theorem 11 Let X, ,; be an n 4+ 1-dimensional locally convex space, f a continuous
convex functional on X, 4, satisfying (Fy), 0 = f(0) < f(z) (¢ # 0), and A a bounded
closed circled convex set such that 0 € IntA. Then we have

dn(A»Xvwl) = ¢(7‘(A))

Proof By the remark of Lemuna 10, there exists an z € 9(r(A4)Sx) N OA. Since z € 94,
there exists a functional ¢ € X7, \ {0} such that

Put sup iﬂﬁ—g—”—) =f,and G = {z € X, 1 :p(z) = 0}, obviously, G is a hyperplane. By
fz)#0

Lemma 8, we have

ps(z,G) = sup pg(y,G) = sup inf f(y - g),
yeA veAYEG

hence

Bf(z) > Y(le(@)]) = sup¥(le(y))) > sup  ¥(le(y)]) = v(r(A4)) = Bf(z),

yEA 3/€r(A)SX"+l

hence ps(z,G) = Y(r(A)) = sup inf f(y — ¢), then we have
yeAYEG

d, (A, X, 41) < Y(r(A4)).

On the other hand, for any n-dimensional subspace G’, there exists a y € X,.;1 \ {0} such
that y L G’. We have

Y(r(A)) = sup inf f(y-9¢').

vEr(A)Sx, ., 9'€G’
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Since n-dimensional subspace G’ is arbitrary, we have

dn(4, Xny1) 2 $(r(4)).

This, together with the opposite inequality shown above, proves the theorem.
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