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Abstract: In [3], a vector space associate with a graph G: “its cycle space” was described
over the two element field Z,. Here we generalize the theory to the ring Z to compute
1-dimensional homology group of a given 2-complex with a combination of algebraic and
graph-theoretic method.
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1. Introduction

The general problem that we consider in this paper is to compute Hy(K™), the 1-
dimensional homology group of a given n-complex K™. Our approach is a combination of
algebraic and graph-theoretic method. Let K™ be a given n-complex, n > 2, and K" its
r-skeleton. We first suggest a method for computing Hi(K!) (= Z;(K')). Then we try
to apply this result to compute H,(K™), using the formula

Hy(K™) = Hi(K?) = Hy(K')/Bi(K?). (1)

Our algebraic terminology and notation follow Croom (2], and the graph-theoretic ones
are essentially those of Bondy and Murty [1]. For the sake of completeness we include here
our main notation. By Z we shall denote the group of integers, by Q the field of rational
numbers. By Z;1(K) we denote the 1-dimensional cycle group of K; it will be treated as a
vector space rather than the group (see [2]).

In Section 2, we give a general outline for our method. It consists of five steps. Step 1 is
developed in Sections 3 and 4, Step 2 in Section 5, Steps 3 and 4 in Section 6. We analyze
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the time complexity for our method in Section 8. In section 9, we illustrate our method,
applying it to 2-pseudomanifolds. In the last Section, an open problem is presented.

2. The method

Here we shall describe the method for computing Hq(K™), the 1-dimensional homology
group of a given n-complex K™.

Input. K™, a given n-complex.

Step 1. Determine a basis, {3}, of Zl(K")

Step 2. Partition the set {s;} into homology classes. Choose one representative in
each of the classes and designate them by S;, i =0,1,...,p.

Step 3. Partition the set {S;} into at most three types of sets:

(i) It has only one 1-cycle which is homologous to zero.

(i) Each element of this type, say S;,, satisfies p;, - 5;,
where the integer p;, > 2.

(iii) Delete the elements of Types (i) and (ii) from {S;}/_,, the rest elements of {S;}/,
consist of the elements of Type (iii).

Step 4. Find in Type (iii) a maximal subset of 1-cycles linear independent with respect
to homology, denote its size by v.

Output. The group H1(K*") =2 26¢...0Z0Z, &... & Z,,,.

v

~ 0 (homologous to zero),

3. 1-chains from the graph-theoretic point of view

By Eq.(1), we can assume n = 2 without lost of generality. Let K2 be an oriented
2-complex. The 1-skeleton of K? will be denoted by D = D(K); thus D is actually a
digraph. Any 1-chain ¢; on K2 can be written as a formal sum of elementary 1-chains

a1 =) gij - (aias), (2)

where the sum is taken over the 1-simplexes (a;a;) of K2, and ¢;; € Z. Since 8({aia;)) =
1-(a;) — 1 (a;) for an elementary 1-chain {a;a;) with orientation given by a; < a;, we

have
Zgu (1 a] "1 a, Zh (3)

where the second sum is taken over the O-simplexes of K2, and h; € Z.

With ¢; we associate a digraph N = N(c;) with a non-negative integer-valued function
f = f(c1) defined on the arc set A = A(N). For this, every arc a;a; of N is assigned
weight g;;; in case g;; < 0 we change it to —g;; with reversing the direction of the arc a;a;.
The resulting arc-weighted digraph defines N. From Eqs.(3) one can see that N has the
property f3(a) = f5(a) (“conservation condition”) for every vertex a not occurring in
the second sum of Eqs.(3) (“intermediate vertex”). Thus, from the graph-theoretic point
of view, a 1-chain is a network N with a flow f. Denote by X its source set, and by Y its
sink set.

As an application, recall that the resultant flow out of X is equal to the resultant
flow into Y ([1, Ex. 11.1.3]). This graph-theoretic fact implies that a multiple of a single
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vertex (i.e. a 0-simplex) cannot be the boundary of any 1-chain. The latter algebraic fact
is implicitly used in [2] for proving [2, Theorem 2.4].

4. Algebraic 1-cycles and graph-theoretic cycles

Let D denote the undirected graph obtained from D by omitting the directions of the
edges. An oriented cycle C = (a;,,ai,,-..,ai,,a;, ) of D will be represented as either of
the following formal sums of its edges

C =a;ai, + aj,a;, + ...+ 6,0, = —ai,0;, — A, Q5 — ... — G;, G5, (4)

When operating with such formal sums, we shall suppose a;a; = —a;a;. A cycle vector
of D is a formal linear combination of its oriented cycles w1th 1ntegral coefficients. Cycle
vectors CY, . .., C are called linearly independent if 21_1 g:-C; = 0(g; € Z) implies g; = 0,
for each 1. Denote by § (D) the cycle space of D, that is, the vector space of cycle vectors
of D over the field Q.

Note: It is easy to see that the linear independence of cycle vectors over the ring Z is
equivalent to their linear independence over the field Q.

Since from the graph-theoretic point of view an algebraic 1-cycle is a network with
X =0 and Y = 0, algebraic 1-cycles on K? and cycle vectors of D are identical:

Lemma 1 Z,(K?) = 5(D).

Now we proceed to determine the basis of S(D). For this, first fix on a spanning tree,
T, of D. Let {e}} be the set E(D) \ E(T). Clearly, for each e, there is precisely one cycle
of D which contains ey and has all other edges in T. That cycle determines two oriented
cycles. Choose any of them and designate it by s.

Lemma 2 The set {s;} forms a basis of S(D).

Proof Let C be an arbitrary oriented cycle of D. Let e, ,...,ex,, denote the edges of C
which are not in 7. We shall prove that

M
C = Za;sk‘, (5)
1=1

where a; is 1 or —1 according to whether or not (respectively) the orientations of C' and
si; are consistent on the edge e;,. To prove Eq.(5), replace ey, for each 7, by the (oriented)
path s, — er,. We thus obtain a closed (oriented) walk of T'. This walk traverses each of
it’s edges some even number of times, in alternating directions, because T' is a tree. This
immediately implies Eq.(5), which completes the proof. O

. Lemmas 1 and 2 imply

Lemma 3 The set {s;} forms a basis of Z;(K?).
5. Checking the homology of 1-cycles

Here we describe a method to verify whether or not two given l-cycles z; and z, are
homologous. This problem is equivalent to the problem of checking whether a given 1-
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cycle z (= z; — z3) is homologous to zero or not. Our method is straightforward. Write a
general 2-chain

a2
62:291"0{2) (6)
=1

where the sum is taken over all 2-simplexes of K. Compute 8(cz). Then write the system
of linear algebraic equations determined by the equation

z = 0(ca). (7)

For this demand that the coefficient appearing with each 1-simplex o in the left-hand side
of Eq. (7) is equal to the total coefficient with ¢} in the right-hand side. The so-obtained
system (7) has a; equations and a; unknowns (g;). Then z ~ 0 if and only if the system
(7) has an integer-valued solution.

6. Partitioning the set {S;}

Partition {S;} obtained by the preceding step into at most three types of sets. Type (i)
has only one 1-cycle, which is homology to zero, denoted by Sy, which can be determined
in Step 2. In order to determine the elements of Type (ii), namely, whether there exists
Pi, 2 2 such that p;, - 5;, ~ 0, we should consider the equation

a2
pik . S‘ik = a(Z gi- aiz)’ (8)
i=1

and write the corresponding system of linear algebraic equation with a; + 1 unknowns (g;
and p;,). Among the integer-valued solutions of the system, find the least and positive
integer for p;,, which is what we want.

At last we shall determine a maximal subset of 1-cycles (in Type (iii)) which are linear
independent with respect to homology. Take first one 1-cycle, Sy, of course it is linearly
independent with respect to homology (l.i.w.r.t.h.), since it is not in Types (i) and (ii).
Then proceed to examine next 1-cycle, S;. Examine then whether S; and S, are Li.w.r.t.h.
Assume S; and S, are Li.w.r.t.h. Then adjoin to them the next 1-cycle, say Ss3, and verify
whether S1, S7, and S3 are Li.w.r.t.h., and so forth, if the set {Sy, S2,---, Sy} is Liw.r.t.h,,
then {S;} has only two types of sets, namely, (i) and (iii). It is obvious that v = py;

To prove whether a set §1,52,...,S57 is Li.w.r.t.h., consider the equation

J ag
D i85 =00 gi-0}), (9)
Jj=1 i=1

and write a corresponding system of linear algebraic equations (like in the preceding
section) with unknowns g; and h;. Then the set {S;} is Li.w.r.t.h.if and only if the system
has no integer-valued nontrivial solution.

7. Writing out H;(K?)
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By the preceding steps, we have determined parameters v and p; in the following

expression
H(EYW>22e..02¢02, 6...92Z,,.

v

By Eq.(1), the method given as above is true.
8. Analyzing the time complexity of our method

In this section, we assume the triangulated n-complex K™ has p vertices and ¢ edges.
Then the number of basis {si} of Z1(K™) determined in Step 1is m := ¢ —p + 1. The
time complexity in Step 1 is O(m).

Then we assume the homology classes obtained in Step 2 is Ag, 41, A2,..., 4w, Auw+t1,
...,A,, where w € Z. So the time complexity in Step 2 of our method is O(m +m — 1 +

A 2414 p) = 0(2GY ).

From Step 3 to Step 4, we choose a representative element from Ag, A1, A2,...,Aw,
Aw+1,-. ., Ay, respectively, and classfy them as follows
SO ) SI)SZ""vswa S‘w+1,SitZa"-aS;t
Type (i) Type (iii) Type (ii)

the time complexity of our method is O(w—1+w—~2+...+1+p—w) = O(M +p—w).
Therefore, the complexity of our method is O(m?), where m is the number of the bases
of Zl(Kn)
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Figure 1: Triangulation of the torus

9. Applications

In this section, we shall use our method to compute the 1-dimensional homology groups
of the torus S;, the Klein bottle S5, the 2-sphere Sg, the annulus A, the Mobius stripe M,
the cylinder C, the project plane S;, the nonorientable surface of genus three .

The Torus is triangulated in Figure 1, the orientation is also indicated by the arrows.
Let the heavy lines determine a spanning tree of S;.
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Sincem=p-q¢+1=27-9+1=19, list its basic cycles as follows:

81 = Gparaidg, 82 = @pa4a7a100; 83 = dpQ4a5a7a149p;

84 = @pA4Q3a5a7a140; S5 = A10802041; 8¢ = a1a7agd24dy;

87 = a1a7a¢aga24), 88 = @1a7A506Q8A2a1; 89 = @gQpa1a20806;

310 = GgQ2a34a¢; 811 = a5a2a14705; 812 = G147as5ay;

813 = @pa4a3a1 4o, $14 = @0A4a30a9; 815 = GgA3a400210A20804;

- 816 = (gQ3Q4Q0Q142a8; 3817 = Agd400A1A20a8; 818 = Gpa1a24p,
819 = Q4Q40a14a24a4.

It is obvious that s; ~ 0,1 € {1,2,3,4,5,6,7,8}, since each of them bounds a face.

=(agaz) + (azag) + (asas),
=(asaz) — (a1a2) + (a1a7) + (azas),
=(aja7) + (a7as) + (asay),
=(aza1) — (@pa1) + {(aoaq) + (asas),
=(aoaq) + (asas) + (azao),
=(agas) — (a4a3) — (@oas) + (aoa1) + (a1az) + (azas) + (agas)
816 =(agaz) — (asas) — (apas) + (agay) + (a1az) + (aqas),
817 =(agas) — (agaq) + (@par) + (araz) + (azas),
818 ={apar) + (ai1az) + {azap),
819 =(aza4) — (@oaq) + (aoaz) + (@a1a2)
810 — 814 ={agaz) + (azas) + (asas) — {aoas) — (asas) — (aszao)

=0((asaza0) + (asaoas) + (asacas) + (agasas) + (azasas) + (asaogas) + (azasao)),
hence 319 ~ $14.

s11 — 814 =(asaz) — (a1a2) + (a1a7) ~ (a7as) — (aoas) — (asas) — (agao)
=08(({asazas) + (azaoas) + (azasas) + (azacas) + (asacas) + (asasas) + (a1a7as)+
(a1agas) + (azasaq) + (agagas) + (azasao)),

therefore 811 ~ $14.

812 — 814 ={aya7) + (azas) + {asay) — (9004) — (aqag) - (aaaq)
=08({a1azas5) + {(asazas) + (azaoas) + (asaoas) + (arasag) + (azacas) + (asagas)+

(agasas) + (a1aras) + (a1agaz) + (azasaq) + (azasao)),
SO 812 ~ 814.

815 — $18 =(asas) .- (aqas) — (agas) — (azap) + (azas) + (asas)
=0((asasas) + (asazas) + (azasas) + (aza4a0)),

so we obtain 815 ~ 318.

316 — 818 = (agas) — (aqas) — (apaq) + (azes) — (azdm = d({asazas) + (azasa4) — (aza0a4)),
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hence 8,6 ~ $13.
s17 — s18 = (@8a4) — (a0as) + (azas) — (a200) = 0((azasa4) + (a204a0)),
so that 817 ~ $81s.
19 — 818 = —(@2a0) — (@oas) + (azaq) = 0({aza0a4)),

hence s19 ~ $18-
Next, we shall prove s;3 % 314.
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Figure 2: Triangulation of the Klein bottle

Otherwise, assume s1s ~ 814, that is to say there exists ¢ such that d(cz) = 318 — 314,
namely (aga1) + (a1a2) + (azao) — (apas) — (agas) — (asag) = 6(2}21 gi - 0%). Consider any
1-simplex which is not in s;g and sy4, say (asa;), 8(¢1 - (asapa1) + g2 - {(a1asa3) +--+) =
—g1-(aza1) + g2 - {(asa1) + , this implies g; — g2 = 0, namely g; = g2. So we obtain

no{asal)
g =g € sfor Vi € {1,2,---18}, then ¢z = 312, g+ 0%, whence s15 — s14 = 8(c2). Fix
on some 1-simplex which is in si4 or s;s, say (asaq), O(g - (azasaq) + g - (asazas) + ) =
—g - (asas) + g - (asaz) + --- = 0. This implies J(c2) = 0, namely s18 = s14, which is a
contradiction to the assumption. The similar arguments yield: k- s;5 % 0, k - 314 # 0.
But sg — 814 — 318 = (agag) + (az2as) + (asag) — (aoas) — (asas) — (azag) — (azag) =
0((asapas) + (asasas) + (asazas) + (azasas) + (azasap)), this implies s14 — s15 + s9 ~ 0.

From above, we partition the basis into four homology classes, they are {s1, 32, 33, 34, 35,
86,387,388}, {30}, {$10, 811, 12, 514}, {515, S16, 517, 318, 510}, choose 31, 89, 514, 815 as one rep-
resentative of them, respectively, since s; ~ 0, sg— 3814+ 318 ~ 0, and $14, 815 are Li.w.r.t.h.,
we obtain v” = 2, and hence H1(S51) = Z & Z.

§; is triangulated as shown in Figure 2, the orientation is indicated by arrows, the
heavy lines determine a spanning tree of the Klein bottle.

List the basic cycles as following:

81 = @Qpaasaszap, 82 = azaasasg, 83 = a1az2a¢agayagay;
84 = A5a2a6agA704s5, 85 = QA5Q608a70a5, 8¢ = Q7a¢agay,

87 = Gga4agag, 8g = @A2a0a3a5a7a80¢a2; 89 = AgApaA3A5a7agag,
$10 = @4a0a3a507a846a4; Si1 = (4030507080604, 812 = azagarasag;
813 = QA2aga¢0az, 814 = Q2a3a5a7agQgaz; 815 = a1aga7d5ay;
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316 = 1 @7a50a;, 817 = QpA7a5a340; 3818 = A4A7A80604;
819 = Q40a5a7a80acaq4.

We can prove: s; ~ 0,7 € {1,---,7}, since each basic cycle bounds a face. Moreover,

88 ~ 310,89 ™~ 310,314 ~~ 310; S12 ™~ 311,318 "~ 311,819 ~~ 311, $13 "~ 317,815 ~ 317,816 ™~ S17.
In fact,

sg =(aza0) — (aszao) + (asas) — (azas) + (azas) + (asas) + (agaz),
89 =(asao) — (asao) + (asas) — (azas) + (aras) + (asas),
$10 =(aado) — (a3a0) + (a3a5) — {azas) + (aras) + (asas) + (dsas),
s11 ={aqas) + (azas) — (azas) + (azas) + (asas) + (agas),
$12 :(a3a5) - <a7as> + (a7‘18> + <a80-3)a
s14 =(aza3) + (aszas) — (aras) + (aras) + (asas) + (asaz),
818 =(a4ar) + (azas) + (asac) + (acas),
819 =(aqas) — (aras) + (aras) + (agas) + (acaq).
38 — 810 =(az2a0) + (agaz) — (asa0) — (acas) = 9((asavas) + (acazao)),

so we obtain sg ~ $810.
Sg — 810 & (acao> - (a4a0) - (aGa4) = 3((06%04)),
hence sg ~ s16.

s14 — 810 =(aza3) + (agaz) — (asao) + (asap) — {(azao) — (acas)

=0((aza3a0) + (agazao) + (acaoas)),
so we get 814 ~ 810.
$12 — 811 = (asas) - (414(13) - <asae) - <a6a4) = 3(—(060408) - (a8a4a3)),
hence s13 ~ $10.
818 — 811 = (@sar) — (asas) — (azas) + (aras) = (—(azasaq) — (asasar)),
namely s$;5 ~ $11. -
819 — 811 = (asas) — (aqas) — (asas) = 0(—(asasaa)),

so we get 819 ~ S11.

18
2811 — 2810 = 2 ((aga3) + (azao) — (aga0) = 3(2 01‘2),
i=1
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this implies 2 - 810 — 2 - 811 ~ 0 (homologous to zero).

s13 ={azag) + {agas) + (agasz),
s15 ={a1as) — (aras) + (azas) + (asa1),
s16 =(a1az7) + (a7as) + (asa1),
s17 ={apaz) + (azas) — (azas) + (asao).
513 — 817 =(a2a6) + (asag) + (agaz) — (aoar) — (aras) — (aszas) ~ {azao)

=8(—({aparai) + (a1azas) + (ar1asas) + (aracas) + (azasag)+
(asazag) + (arazas) + {azayas) + (azapar))),

so we get s13 ~ 317.

815 — $17 ={a1ag) — {(aras) + (asay) — (apaz) + (asas) — (asao)
=8(—({asaoa1) + (asaias) + (aoara;) + (a1a7as))),

hence 815 ~ 3817.

s16 — 817 = — (apay) + {asas) + (azao) + (a1a7) + (azay)

:8(—(a0a1a3) - <a3a1a5) + <a0a1a7))a

so that s16 ~ 817.

Then we shall prove, s;g % *3817. In fact, assume s;9 ~ —s;17, then there exists ¢,
such that s;9 — (—817) = 8(cz), namely (asa0) + (azas) + (asas) + (agas) — (aoar) =
(318, ¢i - 02). Fix 1-simplex which is not in sjo and —sy7, say (azas), then d(g; -
(asayas) + g2 - (asasas) + ---) = —g1 - (asas) + g2 - (asas) + --- + L We easily get

nolasag

g1 — g2 = 0, this means all the coefficients of 2-simplex have a commc<)n vzﬂue say g, then
810 — (—s17) = 0(XT12, ¢ - 0?). But if we fix some 1-simplex which is in sy or s;7, say
(azas), O(g - (a7asas) + g - (azagay) + ---) = —g - (azag) + g - (ayas) + - -, which implies
810 — (—3817) = 0, namely 8190 = —s17, a contradiction arises. So sy 74 —3817, the similar
argument yields: sjg 7% $17.

In the following, we shall prove : s17 % 0;810 % 0;9 310 # 0,9 € Z;2- 3517 ~ 0. We
assume s17 ~ 0, that’s to say, there exists ¢y, such that 9(cz2) = s17, namely

(apar) + (aras) — (azas) + (asao) B(Z gi - o). (10)

Let’s consider any 1-simplex which is not in sy7, for example {(agaq), 9(91 - (asagas) +
g2(aea0a4) + ---) = g1 - {agay) — g2 - (agaq) + N From the foregoing procedure, we

no{agas)
get: g1 — g2 = 0, namely g, = g2, which implies g; = g, ¢ € {1,2,.--,18}. So we get
cy = }_E_l g - of satisfying O(cz) = s17. But if we fix another 1-simplex which is in s7,
say {(agpar), then 9(g - (aparai) + ¢ - (agasar) + ---) = g - (agaz) — g - (agar) + --- = 0,

the left-hand side of Eq.(10) with no term (apa7). But this is impossible , hence s37 % 0.
Similarly, we get: $10 % 0,9 - 810 % 0,9 € Z, namely s,¢ is Liw.r.t.h.
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Finally, we shall prove: 2-s17 ~ 0. Since 2-317 = 2-({apa7) +(azas)— (asas) + (azao)) =
0((aoaia3) + (asaras) + (a1azas) + (asazae) + (az2a0a6) + (asaoaq) + (azasag) + (arasas) +
(agagay) + (agasas) + {(apazay) + (a1a7as) + (a1asas) + (azasas) + (@2a3a0) — (agasas) —
(asagar) — (agazap)).

By the preceding course, we partition the basis into four homology classes, they
are {31,382, 33, 34, 35, 36,37}, {311, 12, 518, $19}, {38, 39, 310,814}, {313, 815, 816, 817}, choose
81,810, 811, $17 as one representative of them, respectively. Since s; ~ 0, s19 — 811 + 817 =
O(—(asasaq) — (asasar) — (agarag)), but 2-s17 ~ 0, 2 (810 — 811) ~ 0, s1p is Li.w.r.t.h. so

-

v=1,p1 = 2. Hence H1(S2) 2 Z & Z,.
With the same method as we have given, we can also get:

Hy(So) = {0}, Hy(4) = Z, H\(M) = Z,H,(C) % 2, Hy(P) % 22, Hy(S5) X 20 Z & Zs.

10. Open problem

The preceding investigation of the method for computing H;(K?) is quite detailed.
Here we present an open problem: How can we generalize the method to compute the
2-dimensional homology group of a given n-complex?
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