Generalized Steiner Triple Systems with Group Size Ten * GE Gen-nian¹, WU Dian-hua² - (1. Dept. of Math., Suzhou University, Jiangsu 215006, China; - 2. Dept. of Math., Guangxi Normal University, Guilin 541004, China) Abstract: Generalized Steiner triple systems, GS(2, 3, n, g) are equivalent to (g+1)-ary maximum constant weight codes (n, 3, 3)s. In this paper, it is proved that the necessary conditions for the existence of a GS(2, 3, n, 10), namely, $n \equiv 0, 1 \pmod{3}$ and $n \geq 12$, are also sufficient. Key words: generalized Steiner triple system; constant weight codes; holey generalized Steiner triple system; singular indirect product. Classification: AMS(2000) 05B07, 94B60/CLC 0157.2 Document code: A Article ID: 1000-341X(2003)03-0391-06 #### 1. Introduction A (g+1)-ary constant weight code (n,w,d) is a code $C\subseteq (Z_{g+1})^n$ of length n and minimum distance d, such that every $c\in C$ has Hamming weight w. To construct a constant weight code (n,w,d) with w=3, a group divisible design (GDD) will be used. A K-GDD is an ordered triple $(\mathcal{V},\mathcal{G},\mathcal{B})$ where \mathcal{V} is a set of n elements, \mathcal{G} is a collection of subsets of \mathcal{V} called groups which partition \mathcal{V} , and \mathcal{B} is a set of some subsets of \mathcal{V} called blocks, such that each block intersects each group in at most one element and that each pair of elements from distinct groups occurs together in exactly one block in \mathcal{B} , where $|\mathcal{B}| \in K$ for any $\mathcal{B} \in \mathcal{B}$. The group type is the multiset $\{|\mathcal{G}|: \mathcal{G} \in \mathcal{G}\}$. A k-GDD (g^n) denotes a K-GDD with n groups of size g and $K = \{k\}$. In a 3-GDD (g^n) , let $\mathcal{V} = (Z_{g+1} \setminus \{0\}) \times (Z_{n+1} \setminus \{0\})$ with n groups $G_i \in \mathcal{G}$, $G_i = (Z_{g+1} \setminus \{0\}) \times \{i\}$, $1 \leq i \leq n$ and blocks $\{(a,i),(b,j),(c,k)\} \in \mathcal{B}$. One can construct a constant weight c ode (n, 3, d) as stated in [1], [2]. From each block we form a codeword of length n by putting an a, b and c in positions i, j and k respectively and zeros elsewhere. This gives a constant weight code over Z_{g+1} with minimum distance 2 or 3. If the minimum distance is 3, then the code is a (g+1)-ary maximum constant weight code (MCWC) (n,3,3) and ^{*}Received date: 2000-06-03 Foundation item: Supported by YNSFC (10001026) for the first author, by Tianyuan Mathematics Foundation of NNSFC and Guangxi Science Foundation and Guangxi Education Committee for the second author. Biography: GE Gen-nian (1969-), Ph.D., Associate Professor. the 3-GDD(g^n) is called generalized Steiner triple system, denoted by GS(2,3,n,g). It is easy to see that a 3-GDD(g^n) is a GS(2,3,n,g) iff any two intersecting blocks intersect at most two common groups of the GDD. The following result is known. **Lemma 1.1**^[1,2] If there exists a GS(2,3,n,g), then - (1) $(n-1)g \equiv 0 \pmod{2}$; - (2) $n(n-1)g^2 \equiv 0 \pmod{6}$; - (3) $n \geq g + 2$. The necessary conditions are shown to be sufficient for g = 2,3 with one exception by Etzion^[1], for g = 4,9 by Phelps and Yin^[1,2], for g = 5,6 by Chen, Ge and Zhu^[4,5], for g = 7,8 by Wu, Ge and Zhu^[6]. **Lemma 1.2** The necessary conditions for the existence of a GS(2, 3, n, g) are also sufficient for g = 2, 3, 4, 5, 6, 7, 8 and 9 with one exception of (g, n) = (2, 6). Blake-Wilson and Phelps^[7] proved that the necessary conditions for the existence of a GS(2,3,n,g) are also asymptotically sufficient for any g. As used in [6], for $g \geq 7$, let $T_g = \{n: \text{ there exists a } GS(2,3,n,g)\}$, $B_g = \{n: n \text{ satisfying the necessary conditions listed in Lemma 1.1 }, <math>M_g = \{n: n \in B_g, n \leq 9g + 158 \}$. We have the following. **Lemma 1.3**^[6] For any $g \geq 7$, if $M_g \subset T_g$, then $B_g = T_g$. That is the necessary conditions for the existence of a GS(2,3,n,g) are also sufficient. In this paper, the following result is obtained. **Theorem 1.4** There exists a GS(2,3,n,10) if and only if $n \equiv 0,1 \pmod 3$ and $n \geq 12$. Combining Lemma 1.2 and Theorem 1.4, it is known that the existence of a GS(2,3,n,g) is completely determined for any $g \leq 10$. For general background on designs, see [8]. #### 2. Preliminaries In product constructions, we will need the concept of both holey generalized Steiner triple systems and disjoint incomplete Latin squares. A holey group divisible design, K - HGDD, is a fourtuple $(V, \mathcal{G}, \mathcal{H}, \mathcal{B})$, where V is a set of points, \mathcal{G} is a partition of V into subsets called groups, $\mathcal{H} \subset \mathcal{G}$, \mathcal{B} is a set of blocks such that a group and a block contain at most one common point and every pair of points from distinct groups, not both in \mathcal{H} , occurs in a unique block in \mathcal{B} , where $|\mathcal{B}| \in K$ for any $B \in \mathcal{B}$. A k-HGDD $(g^{(n,u)})$ denotes a K-HGDD with n groups of size g in \mathcal{G} , u groups in \mathcal{H} and $K = \{k\}$. A holey generalized Steiner triple system, HGS(2,3,(n,u),g), is a 3-HGDD $(g^{(n,u)})$ with the property that any two intersecting blocks intersect at most two common groups. It is easy to see that if u = 0 or u = 1, then a HGS(2,3,(n+u,u),g) is just a GS(2,3,n,g) or a GS(2,3,n+1,g) respectively. A Latin square of side n, LS(n), is an $n \times n$ array based on some set S of n symbols with the property that every row and every column contains every symbol exactly once. An incomplete Latin square, ILS(n+a,a), denotes a LS(n+a) "missing" a sub LS(a). Without loss of generality, we may assume that the missing subsquare, or hole, is at the lower right corner. We say $(i,j,s) \in ILS(n+a,a)$ if the entry in the cell (i,j) is s. Let A_1 , A_2 be two ILS(n+a,a)s on the same symbol set. If $(i,j,s_1) \neq (i,j,s_2)$ for any $(i,j,s_1) \in A_1$, $(i,j,s_2) \in A_2$, then we say that A_1 and A_2 are disjoint. We use r DILS(n+a,a) to denote r pairwise disjoint ILS(n+a,a)s, and r DLS(n) to denote r pairwise disjoint LS(n)s. The following singular indirect product construction was first stated in [4]. Lemma 2.1 (SIP) Let m, n, t, u and a be integers such that $0 \le a \le u < n$. Suppose the following designs exist: (1) tDILS(n + a, a); (2) a $3 - \text{GDD}(g^m)$ with the property that all blocks of the design can be partitioned into t sets S_0, S_1, \dots, S_{t-1} , such that the minimum distance in $S_r, 0 \le r \le t-1$, is 3; (3) a HGS(2, 3, (n + u, u), g). Then there exists a HGS(2, 3, (c, d), g), where c = m(n + a) + u - a, d = ma + u - a. Further, if there exists (4) a GS(2, 3, ma + u - a, g), then there exists a GS(2, 3, m(n + a) + u - a, g). To use SIP construction, we need the following known result on t DILS(n + a, a). **Lemma 2.2**^[9] There exist nDILS(n+a,a) for any positive integer n and for any integer $a, 0 \le a \le n$ except for (n,a) = (2,1), (6,5). From Lemma 2.2, t DLS(n) exist when $t \le n$. So, take $u \in \{0,1\}$, a = 0 in Lemma 2.1, we have the following. **Lemma 2.3** Let m, n, t, and u be integers such that $u \in \{0, 1\}$. Suppose $t \le n$ and the following designs exist: (1) a $3 - \text{GDD}(g^m)$ with the property that all blocks of the design can be partitioned into t sets S_0, S_1, \dots, S_{t-1} , such that the minimum distance in $S_\tau, 0 \le r \le t-1$, is 3; (2) a GS(2, 3, n+u, g). Then there exist both an HGS(2, 3, (mn+u, u), g) and a GS(2, 3, mn+u, g). The following lemma is similar to Lemma 5.8 in [6], so we omit the proof. **Lemma 2.4** If there exists a GS(2,3,n,10), then there exist a GS(2, 3, mn,10) and a GS(2, 3, m(n-1)+1, 10), where m=3,4,6 and 7. #### 3. Proof of Theorem 1.4 For Lemma 1.1, the necessary conditions for the existence of a GS(2,3,n,10) become $n \equiv 0,1 \pmod{3}$ and $n \geq 12$. It is known that there exists a GS(2,3,q+1,q-1) for any prime power q in [1, Section 4]. Take q = 11, we get a GS(2,3,12,10). **Lemma 3.1** There exists a GS(2,3,n,10) for any $n \in F_1$, where $F_1 = \{12,13, 16, 21, 24, 25, 28, 33, 40\}$. **Proof** For n = 12, as stated above, there exists a GS(2,3,12,10). For each $n \in F_1 \setminus \{12\}$, with the aid of a computer, we have found a set of base blocks of a GS(2,3,n,10). The corresponding base blocks are listed in Appendix A (In order to save space, we omit Appendix A, the interested reader may contact the authors for a copy). \Box **Lemma 3.2** There exists a GS(2, 3, n, 10) for any $n \in F_2$, where $F_2 = \{18, 22, 30, 42, 58\}$. **Proof** For each $n \in F_2$, with the aid of a computer, we have found a set of generalized base blocks of a GS(2,3,n,10). The corresponding base blocks are listed in Appendix B (In order to save space, we omit Appendix B, the interested reader may contact the authors for a copy). \Box **Lemma 3.3** There exists a GS(2,3,n,10) for any $n \in F_3$, where $F_3 = \{15, 19, 27, 31, 51\}$. **Proof** For each $n \in F_3$, with the aid of a computer, we have found a set of generalized base blocks of a GS(2,3,n,10). The corresponding base blocks are listed in Appendix C. (In order to save space, we omit Appendix C, the interested reader may contact the authors for a copy). \Box **Lemma 3.4** There exists a GS(2, 3, v, 10) for any $v \in F_4$, where $F_4 = \{v : v \equiv 0, 1 \pmod{3}, 12 \le v \le 82\}$. **Proof** For $v \in F_1 \cup F_2 \cup F_3$, the conclusion comes from Lemmas 3.1-3.3. For the remaining values v, we can write v = mn or v = m(n-1)+1 for some $m \in \{3,4,6\}$ and $n \in F_1 \cup F_2 \cup F_3$. By Lemmas 3.1-3.3 and Lemma 2.4, there exists a GS(2,3,v,10). Here, we list the triples (v, m, n) in Table 3.1. \square | $oldsymbol{v}$ | m | \boldsymbol{n} | $oldsymbol{v}$ | m | \boldsymbol{n} | $oldsymbol{v}$ | m | \boldsymbol{n} | |-----------------------|---|------------------|-----------------------|---|------------------|-----------------------|---|------------------| | $34 = 3 \cdot 11 + 1$ | 3 | 12 | $36 = 3 \cdot 12$ | | 12 | $37 = 3 \cdot 12 + 1$ | 3 | 13 | | $39=3\cdot 13$ | 3 | 13 | $43 = 3 \cdot 14 + 1$ | 3 | 15 | $45=3\cdot 15$ | 3 | 15 | | $46 = 3 \cdot 15 + 1$ | 3 | 16 | $48 = 3 \cdot 16$ | 3 | 16 | $49 = 4 \cdot 12 + 1$ | 4 | 13 | | $52 = 3 \cdot 17 + 1$ | 3 | 18 | $54 = 3 \cdot 18$ | 3 | 18 | $55 = 3 \cdot 18 + 1$ | 3 | 19 | | $57 = 3 \cdot 19$ | 3 | 19 | $60 = 4 \cdot 15$ | 4 | 15 | $61 = 4 \cdot 15 + 1$ | 4 | 16 | | $63=3\cdot 21$ | 3 | 21 | $64 = 3 \cdot 21 + 1$ | 3 | 22 | $66=3\cdot 22$ | 3 | 22 | | $67 = 6 \cdot 11 + 1$ | 6 | 12 | $69=4\cdot 17+1$ | 4 | 18 | $70 = 3 \cdot 23 + 1$ | 3 | 24 | | $72=3\cdot 24$ | 3 | 24 | $73 = 3 \cdot 24 + 1$ | 3 | 25 | $75 = 3 \cdot 25$ | 3 | 25 | | $76 = 4 \cdot 19$ | 4 | 19 | $78 = 6 \cdot 13$ | 6 | 13 | $79 = 3 \cdot 26 + 1$ | 3 | 27 | | $81=3\cdot 27$ | 3 | 27 | $82 = 3 \cdot 27 + 1$ | 3 | 28 | | | | Table 3.1 triples (v, m, n) for $v \in F_4 \setminus (F_1 \cup F_2 \cup F_3)$ **Lemma 3.5** There exists a GS(2,3,v,10) for any $v \in F_5$, where $F_5 = \{v: v \equiv 0,1, 3,7 \pmod{9}, 12 \le v \le 246\}$. **Proof** For $v \equiv 0,1,3$ (mod 9), write v = 9t + k, where k = 0,1,3. If $t \leq 3$, the result follows from Lemma 3.4. Otherwise, $t \geq 4$. Let n = 3t, then v = 3n, 3n + 1 or 3(n + 1). Since $v \leq 246$, we have $4 \leq t \leq 27$, hence $n \leq 81, n + 1 \leq 82$. Notice that $n \in B_{10}$ and $n + 1 \in B_{10}$, by Lemma 2.4 and Lemma 3.4, there exists a GS(2, 3, v, 10). For $v \equiv 7 \pmod{9}$, write v = 9t + 7. If $t \leq 2$, the result follows from Lemma 3.4. Otherwise, $t \geq 3$. Let n = 3t + 3, then v = 3(n - 1) + 1. Since $v \leq 246$, we have $t \leq 26$, hence $n \leq 81$. Notice that $n \in B_{10}$, by Lemma 2.8 and Lemma 3.4, there exists a GS(2, 3, v, 10). \square **Lemma 3.6** There exists a GS(2,3,v,10) for any $v \in F_6$, where $F_6 = \{v: v \equiv 4,6,13,24,31,33 \pmod{36}, 12 \le v \le 247\}$. **Proof** Write v = 36t + k, k = 4, 6, 13, 24, 31, 33. If t = 0 and $k \ge 24$ or $t \le 1$ and $k \le 13$, the result comes from Lemma 3.4. Otherwise, $t \ge 1$ for $k \ge 24$ or $t \ge 2$ for $k \le 13$. Notice $v \le 247$, we can write v = mn or v = mn + 1 for some $m \in \{4, 6\}$ and $n \in B_{10}, n \le 60$. From Lemma 2.4 and Lemma 3.4, there exists a GS(2, 3, v, 10). Here we list the fourtuples (k, v, m, n) in Table 3.2. \square | \overline{k} | \overline{v} | \overline{m} | \overline{n} | \bar{k} | v | m | n | |----------------|----------------------------|----------------|----------------|-----------|----------------------------|---|------| | 4 | $v = 4 \cdot (9t + 1)$ | 4 | 9t+1 | 6 | $v = 6 \cdot (6t + 1)$ | 6 | 6t+1 | | 13 | $v = 4 \cdot (9t + 3) + 1$ | 4 | 9t + 4 | 24 | $v=6\cdot(6t+4)$ | 6 | 6t+4 | | 31 | $v = 6 \cdot (6t + 5) + 1$ | 6 | 6t+6 | 33 | $v = 4 \cdot (9t + 8) + 1$ | 4 | 9t+9 | Table 3.2 fourtuples (k, v, m, n) for Lemma 3.6 **Lemma 3.7** There exists a GS(2, 3, v, 10) for any $v \in F_7$, where $F_7 = \{v : v \equiv 15, 22 \pmod{36}, 12 \le v \le 247\}$. **Proof** For $v \equiv 15 \pmod{36}$, write v = 36e + 15. If $e \le 1$, then $v \le 51$, from Lemma 3.4, there exists a GS(2, 3, 51, 10). If e = 2, then v = 87. Since there exists a GS(2, 3, 13, 10) by Lemma 3.4, we get an HGS(2, 3, (37, 13), 10) by Lemma 2.4. We can apply Lemma 2.1 with m = 3, n = 24, t = 10, u = 13, a = 1 to obtain a GS(2, 3, 87, 10). The 10 DILS(24 + 1, 1) comes from Lemma 2.2, and the GS(2, 3, 15, 10) is from Lemma 3.4. For $e \ge 3$, take u = 3e + 3 and n = 6e + 6, then $3e - 4 \ge 5$. Since $e \ge 3$ and $v \le 247$, we have $3 \le e \le 6$, hence $12 \le u \le 21$. From Lemma 3.4, there exists a GS(2, 3, u, 10). So there exists an HGS(2, 3, (n + u, u), 10) from Lemma 2.4. Apply Lemma 2.1 with m = 4, n = 6e + 6, t = 5, u = 3e + 3, a = 3e - 4, we obtain a GS(2, 3, v, 10). The 5 DILS(n + a, a) comes from Lemma 2.2 since $3e - 4 \ge t$. The GS(2, 3, ma + u - a, 10) is from Lemma 3.4, since $27 \le ma + u - a = 12e - 9 \le 63$. For $v \equiv 22 \pmod{36}$, write v = 36e + 22. For e = 1, the result follows from Lemma 3.4. For e = 2, v = 94, apply Lemma 2.1 with m = 3, n = 24, t = 10, u = 12, a = 5, we get a GS(2,3,94,10). For $e \geq 3$. Just as we did in the case $v \equiv 15 \pmod{36}$, apply Lemma 2.1 with m = 4, n = 6e + 6, t = 5, u = 3e + 4, a = 3e - 2, we obtain a GS(2,3,v,10). \square Combining Lemma 3.6 and Lemma 3.7, we have the following. **Lemma 3.8** There exists a GS(2, 3, v, 10) for any $v \in F_8$, where $F_8 = \{v : v \equiv 4, 6 \pmod{9}, 12 \le v \le 247\}$. Now, we are in a position to prove Theorem 1.4. **Proof of Theorem 1.4** From Lemma 1.3, we need only to consider the values v, such that $v \in B_{10}$, $v \le 247$, the conclusion follows from Lemma 3.5 and Lemma 3.8. \square ### References: - [1] ETZION T. Optimal constant weight codes over Z_k and generalized designs [J]. Discrete Math., 1997, 169: 55-82. - [2] PHELPS K, YIN C. Generalized Steiner systems with blocksize three and group size $g \equiv 3 \pmod{6}$ [J]. J. Combin. Des., 1997, 5(6): 417-432. - [3] PHELPS K, YIN C. Generalized Steiner systems with blocksize three and group size four [J]. Ars Combin., 1999, 53: 133-146. - [4] CHEN K, GE G, ZHU L. Generalized steiner triple systems with group size five [J]. J. Combin. Des., 1999, 7: 441-452. - [5] CHEN K, GE G, ZHU L. Starters and related codes [J]. J. Statist. Plann. Inference., 2000, 86(2): 379-395. - [6] WU D, GE G, ZHU L, Generalized Steiner Triple Systems with Group Size g = 7, 8 [J]. Ars Combin., 2000, 57: 175-191. - [7] BLAKE-WILSON S, PHELPS K. Constant weight codes and group divisible design [J]. Des. Codes Cryptogr., 1999, 16(1): 11-27. - [8] COLBOURN C J, DINITZ J H. The CRC Handbook of Combinatorial Designs [M]. CRC Press, Boca Raton, 1996. - [9] LEI J, KANG Q, CHANG Y, The spectrum for large set of disjoint incomplete Latin squares [J]. Discrete Math., 2001, 238: 89-98. # 组大小为 10 的广义 Steiner 三元系 葛根年1,吴佃华2 (1. 苏州大学数学系, 江苏 苏州 215006; 2. 广西师范大学数学系, 广西 桂林 541004) 摘 要: 广义 Steiner 三元系 GS(2,3,n,g) 等价于 g+1 元最优常重量码 (n,3,3). 本文证 明了 GS(2,3,n,10) 存在的必要条件 $n \equiv 0,1 \pmod{3}, n \geq 12$ 也是充分的.