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Abstract: Generalized Steiner triple systems, GS(2, 3, n, g) are equivalent to (g+ 1)-ary
maximum constant weight codes (n,3, 3)s. In this paper, it is proved that the necessary
conditions for the existence of a GS(2,3,n,10), namely, n = 0,1 (mod 3) and n > 12,
are also sufficient.
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1. Introduction

A (g + 1)-ary constant weight code (n,w,d) is a code C C (Z,41)" of length n and
minimum distance d, such that every ¢ € C has Hamming weight w. To construct a
constant weight code (n,w,d) with w = 3, a group divisible design (GDD) will be used.
A K-GDD is an ordered triple (V,G,B) where V is a set of n elements, G is a collection
of subsets of V called groups which partition V, and B is a set of some subsets of V
called blocks, such that each block intersects each group in at most one element and
that each pair of elements from distinct groups occurs together in exactly one block in
B, where |B| € K for any B € B. The group type is the multiset {|G] : G € G}. A
k-GDD(g") denotes a K-GDD with n groups of size g and K = {k}. In a 3-GDD(g"), let

= (Z5+1\ {0}) X (Zn41\ {0}) with n groups G; € G, Gi = (Z,11 \ {0}) x {i}, 1 <i<n
a.nd blocks {(a,?),(b,7),(c,k)} € B. One can construct a constant weight c

ode (n,3,d) as stated in [1], [2]. From each block we form a codeword of length n by
putting an a, b and c in positions %, j and k respectively and zeros elsewhere. This gives a
constant weight code over Z,,; with minimum distance 2 or 3. If the minimum distance
is 3, then the code is a (g + 1)-ary maximum constant weight code (MCWC) (n,3,3) and
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the 3-GDD(g") is called generalized Steiner triple system, denoted by GS(2,3,n,g). It is
easy to see that a 3-GDD(g") is a GS(2, 3,n, ¢) iff any two intersecting blocks intersect at
most two common groups of the GDD. The following result is known.

Lemma 1.102 If there exists a GS(2,3,n,9), then

(1) (n—1)g =0 (mod 2);

(2) n(n-1)g* =0 (mod 6);

(3) n>g+2.

The necessary conditions are shown to be sufficient for ¢ = 2,3 with one exception by
Etzionl!, for ¢ = 4,9 by Phelps and Yin(*%, for ¢ = 5,6 by Chen, Ge and Zhul*®, for
g = 7,8 by Wu, Ge and Zhu!®.

Lemma 1.2 The necessary conditions for the existence of a GS(2, 3, n, g) are also
sufficient for g = 2, 3, 4,5, 6, 7, 8 and 9 with one exception of (g,n) = (2,6).

Blake-Wilson and Phelps!”] proved that the necessary conditions for the existence of a
GS(2,3, n,g) are also asymptotically sufficient for any g. As used in [6], for ¢ > 7, let T}
= {n: there exists a GS(2,3,n,9)}, B, = {n: n satisfying the necessary conditions listed
in Lemma 1.1 }, My = {n: n € By,n < 9g + 158 }. We have the following.

Lemma 1.3[6 For any ¢ > 7, if My C T,, then B; = T,. That is the necessary conditions
for the existence of a GS(2,3,n,g) are also sufficient.
In this paper, the following result is obtained.

Theorem 1.4 There exists a GS(2,3,n,10) if and only if n = 0,1 (mod 3) and n > 12.
Combining Lemma 1.2 and Theorem 1.4, it is known that the existence of a GS(2, 3,7, g)
is completely determined for any g < 10. For general background on designs, see [8].

2. Preliminaries

In product constructions, we will need the concept of both holey generalized Steiner
triple systems and disjoint incomplete Latin squares.

A holey group divisible design, K — HGDD, is a fourtuple (V,G,H, B), where V is a
set of points, G is a partition of V into subsets called groups, H C G, B is a set of blocks
such that a group and a block contain at most one common point and every pair of points
from distinct groups, not both in H, occurs in a unique block in B, where |B| € K for
any B € B. A k-HGDD(g(™*)) denotes a K-HGDD with n groups of size g in G, u groups
in H and K = {k}. A holey generalized Steiner triple system, HGS(2,3,(n,u),g), is a
3—HGDD(g("*“)) with the property that any two intersecting blocks intersect at most two
common groups.

It is easy to see that if ¥ = 0 or u = 1, then a HGS(2,3,(n + u,u),g) is just a
GS(2,3,7n,9) or a GS(2,3,n + 1,g) respectively.

A Latin square of side n, LS(n), is an n X n array based on some set S of n symbols with
the property that every row and every column contains every symbol exactly once. An
incomplete Latin square, ILS(n+a, a), denotes a LS(n+a) "missing” a sub LS(a). Without
loss of generality, we may assume that the missing subsquare, or hole, is at the lower right
corner. We say (%,7,s) € ILS(n + a,a) if the entry in the cell (,7) is 5. Let A;, Az be
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two ILS(n + a,a)s on the same symbol set. If (4,7,s1) # (i,4,52) for any (4,j,s1) € A1,

(¢,7,82) € Az, then we say that A; and A, are disjoint. We use r DILS(n + a,a) to denote

r pairwise disjoint ILS(n + a,a)s, and  DLS(n) to denote r pairwise disjoint LS(n)s.
The following singular indirect product construction was first stated in [4].

Lemma 2.1 (SIP) Let m,n,t,u and a be integers such that 0 < @ < u < n. Suppose
the following designs exist: (1) tDILS(n + a,a); (2) a 3 — GDD(g™) with the property
that all blocks of the design can be partitioned into t sets Sg,S1, -, St—1, such that the
minimum distance in S,,0 < r < t-1,is 3; (3) a HGS(2,3,(n + u,u),g). Then there
exists a HGS(2,3,(c,d),g), where ¢ = m(n + a)+ u — a,d = ma + u — a. Further, if there
exists (4) a GS(2,3,ma + u — a,g), then there exists a GS(2,3,m(n + a) + u — a,g).

To use SIP construction, we need the following known result on t DILS(n + a, a).

Lemma 2.2% There exist nDILS(n + a, a) for any positive integer n and for any integer
a, 0 < a < n except for (n,a) = (2,1), (6,5).

From Lemma 2.2, t DLS(n) exist when t < n. So, take u € {0,1}, a = 0 in Lemma
2.1, we have the following.

Lemma 2.3 Let m,n,t, and u be integers such that u € {0,1}. Suppose t < n and the
following designs exist: (1) a3 — GDD(g™) with the property that all blocks of the design
can be partitioned into t sets Sg, Sy, -+, Si_1, such that the minimum distance in §,,0 <
r<t-1,is3; (2) a GS(2,3,n+ u,g). Then there exist both an HGS(2, 3, (mn + u, u), g)
and a GS(2,3,mn + u, g).

The following lemma is similar to Lemma 5.8 in [6], so we omit the proof.

Lemma 2.4 If there exists a GS(2,3,n,10), then there exist a GS(2, 3, mn,10) and a
GS(2, 3, m(n —1)+ 1, 10), where m = 3,4,6 and 7.

3. Proof of Theorem 1.4

For Lemma 1.1, the necessary conditions for the existence of a GS(2,3,n,10) become
n=0,1 (mod 3) and n > 12. It is known that there exists a GS(2,3,¢9 + 1,¢ — 1) for any
prime power ¢ in [1, Section 4]. Take ¢ = 11, we get a GS(2,3,12,10).

Lemma 3.1 There exists a GS(2,3,n,10) for any n € F;, where F; ={12,13, 16, 21, 24,
25, 28, 33, 40}.

Proof For n = 12, as stated above, there exists a GS(2,3,12,10). For each n € F; \ {12},
with the aid of a computer, we have found a set of base blocks of a GS(2,3,n,10). The
corresponding base blocks are listed in Appendix A (In order to save space, we omit Ap-
pendix A, the interested reader may contact the authors for a copy). O

Lemma 3.2 There exists a GS(2,3,n,10) for any n € F», where F;={18, 22, 30, 42, 58}.

Proof For each n € F, with the aid of a computer, we have found a set of generalized
base blocks of a GS(2,3,n,10). The corresponding base blocks are listed in Appendix
B (In order to save space, we omit Appendix B, the interested reader may contact the
authors for a copy). O

— 393 —



Lemma 3.3 There exists a GS(2,3,n,10) for any n € F3, where F3={15, 19, 27, 31, 51}.

Proof For each n € F3, with the aid of a computer, we have found a set of generalized
base blocks of a GS(2,3,n,10). The corresponding base blocks are listed in Appendix
C. (In order to save space, we omit Appendix C, the interested reader may contact the
authors for a copy). O

Lemma 3.4 There exists a GS(2,3,v,10) for any v € Fy, where Fy = {v : v = v
0,1 (mod 3),12 < v < 82}.

Proof For v € F; U F; U F3, the conclusion comes from Lemmas 3.1-3.3. For the re-
maining values v, we can write v = mn or v = m(n — 1) + 1 for some m € {3,4,6} and
n € F;U F, U F3. By Lemmas 3.1-3.3 and Lemma 2.4, there exists a GS(2,3,v,10). Here,
we list the triples (v,m,n) in Table 3.1. O

v m n v m n v m n
34=3-114+1 3 12 36=3-12 3 12 37=3-1241 3 13
39=3-13 3 13 43=3-144+1 3 15 45=3-15 3 15
46=3-15+1 3 16 48=13-16 3 16 49=4-1241 4 13
52=3-1741 3 18 54=13-18 3 18 55=3-1841 3 19
57=3-19 3 19 60=4-15 4 15 61=4-154+1 4 16
63 =321 3 21 64=3-21+1 3 22 66=3-22 3 22
67=6-11+1 6 12 69=4-174+1 4 18 70=3-23+1 3 24
72=13-24 3 24 73=3-244+1 3 25 75=3-25 3 25
76 =419 4 19 78=6-13 6 13 79=3-26+1 3 27
81=3.27 3 27 82=3.-2741 3 28

Table 3.1 triples (v,m,n) for v € Fy \ (F1 U Fy U F3)

Lemma 3.5 There exists a GS(2,3,v,10) for any v € F5, where F5 = {v: v = 0,1,
3,7 (mod 9), 12 < v < 246}.

Proof For v = 0,1,3 (mod 9), write v = 9t + k, where k = 0,1,3. If t < 3, the result
follows from Lemma 3.4. Otherwise, t > 4. Let n = 3¢, then v = 3n,3n + 1 or 3(n + 1).
Since v < 246, we have 4 <t < 27, hence n < 81,n + 1 < 82. Notice that n € By and
n+ 1 € By, by Lemma 2.4 and Lemma 3.4, there exists a GS(2, 3,v,10).

For v = 7 (mod 9), write v = 9¢ + 7. If ¢t < 2, the result follows from Lemma 3.4.
Otherwise, ¢t > 3. Let n = 3t + 3, then v = 3(n — 1) + 1. Since v < 246, we have
t < 26, hence n < 81. Notice that n € Byg, by Lemma 2.8 and Lemma 3.4, there exists a
GS(2,3,v,10). O

Lemma 3.6 There exists a GS(2,3,v,10) for any v € Fg, where Fg = {v: v = 4,6,13, 24,
31,33 (mod 36),12 < v < 247}

Proof Write v = 36t + k,k = 4,6,13,24,31,33. Ift =0and k¥ > 24 or t <1 and k <13,
the result comes from Lemma 3.4. Otherwise, t > 1 for k > 24 or t > 2 for k£ < 13. Notice
v < 247, we can write v = mn or v = mn + 1 for some m € {4,6} and n € Byp,n < 60.
From Lemma 2.4 and Lemma 3.4, there exists a GS(2,3,v,10). Here we list the fourtuples
(k,v,m,n) in Table 3.2. O :
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k v m n k v m n
4 v=4-(9t+1) 4 9t+1 6 v="06-(6t+1) 6 6t+1
4 6
6 4

13 v=4-(9t+3)+1 944 24  v=6-(6t+4) 6t+4
31 v=6-(6t+5)+1 6146 33 v=4-(9t+8)+1 9t+9

Table 3.2 fourtuples (k,v,m,n) for Lemma 3.6

Lemma 3.7 There exists a GS(2, 3,v,10) for any v € Fy, where F; = {v: v = 15,22 (mod 36),
12 < v < 247},

Proof For v = 15 (mod 36), write v = 36e + 15. If e < 1, then v < 51, from Lemma 3.4,
there exists a GS(2,3,51,10). If e = 2, then v = 87. Since there exists a G5(2,3,13,10)
by Lemma 3.4, we get an HGS(2,3,(37,13),10) by Lemma 2.4. We can apply Lemma
2.1 with m = 3,n = 24,t = 10,u = 13,a = 1 to obtain a GS(2,3,87,10). The 10
DILS(24 + 1,1) comes from Lemma 2.2, and the GS(2,3,15,10) is from Lemma 3.4. For
e >3, takeu = 3e+3andn = 6e + 6, then 3e —4 > 5. Since e > 3 and v < 247,
we have 3 < e < 6, hence 12 < u < 21. From Lemma 3.4, there exists a GS(2,3,u,10).
So there exists an HGS(2,3,(n + u,u),10) from Lemma 2.4. Apply Lemma 2.1 with
m = 4,n = 6e + 6,t = 5,u = 3¢ + 3,a = 3e — 4, we obtain a GS(2,3,v,10). The 5
DILS(n + a,a) comes from Lemma 2.2 since 3¢ — 4 > t. The GS(2,3,ma + u — a,10) is
from Lemma 3.4, since 27T < ma+u —a = 12¢ — 9 < 63.

For v = 22 (mod 36), write v = 36e + 22. For e = 1, the result follows from Lemma
3.4. For e = 2, v = 94, apply Lemma 2.1 with m = 3,n = 24,t = 10,4 = 12,a = 5, we get
a GS(2,3,94,10). For e > 3. Just as we did in the case v = 15 (mod 36), apply Lemma
2.1 withm =4,n =6e+6,t =5,u=3e+4,a = 3e ~ 2, we obtain a GS(2,3,v,10). O

Combining Lemma 3.6 and Lemma 3.7, we have the following.

Lemma 3.8 There exists a GS(2,3,v,10) for any v € Fg, where Fg = {v: v = 4,6 (mod 9),
12 < v < 247).
Now, we are in a position to prove Theorem 1.4.

Proof of Theorem 1.4 From Lemma 1.3, we need only to consider the values v, such
that v € Byg,v < 247, the conclusion follows from Lemma 3.5 and Lemma 3.8. O
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EREL R 4
(1. HMAEHER, W HM 215006; 2. FHEMEAEEFR, T HMK 541004)

% E: X Steiner =TTE GS(2,3,n,9) HMTF g+ 1 TRUFHEEN (n,3,3). XXIE
BT GS(2,3,n,10) FFEEMDERM n = 0,1(mod3), n > 12 LERLH.
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