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1. Introduction

Wavelet analysis is a rapidly developing area in the mathematical sciences which is
emerging as a brisk and important field of investigation. Moreover, it has already created
a tight link between mathematicans and electrical engineers, and has even drawn a great
deal of attention from scientists and engineers in other disciplines.

Historically, the study of wavelet analysis was based on the standard approach of func-
tional analysis (see [1], [2], [3], [4] and [5]). However, the basic aspects of wavelet analysis
can be derived using fairly elementary means of matrix algebra, and matrix method plays
an important role in the study of wavelets (see [6] and [7]).

In this paper, we will give a survey about matrix approach in wavelet analysis. Some
related results, which were deduced by ourselves, also presented.

2. Wavelet matrices

Let us consider an integer dilation parameter m > 2. The main idea in the construc-
tions of wavelet bases is the multiresolution analysis.

Definition 1 A sequence of closed subspaces {V;};ez in L*(R) is a multiresolution anal-
ysis of L?(R) (abbr. MRA )if it satisfies the following conditions:
o Vi. CViyy, forallk e Z;
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o f(z) € V} if and only if f(mz) € Viyq, forall k € Z;

o () Vi = {0} and |J Vi = L%(R);
kezZ kez
o there is an element ¢ € Vy such that {¢(- — l)}icz is an orthonormal basis of Vj,

where R denotes the set of all real numbers and Z the set of all integers.
By the definition of multiresolution analysis above, ¢ satisfies a dilation equation (or
sometimes, we call it refinable equation) of the form

1
¢(z) = m7 Y hup(ma — k) (1)
keZ
and there are m — 1 wavelet functions %(?), s = 1,2,---,m — 1, which are defined as some
special linear combinations of the scaling function
¥W(@) = mi Y g p(mz — k), (2)
keZ

where {h;}rez and {!];(:)}kez are sequences of numbers.

Definition 2 Let {A,}.cz be a matrix sequence,

hﬂm hnm+1 e hnm+m—1
(1) (1) A ¢ )]
gnm gnm+l gnm+m—1
An = . . . . y
(m'—l) (n;—l) (m—:l)
gnm nm+1 nm+m-—1
each A,, is a square matrix of size m x m, then, matrix A= (--- Ap Ay Ay --:)is

called the wavelet matrix.

As to the definition of general wavelet matrix, one may refer to [6].

The orthogonality of the integer translates of scaling function ¢ and wavelet functions
P (s=1,2,--.,m— 1) implies that

ST AL = b0k, k€2, (3)
le2

where g, is the kronecker delta.
Now we give two simple examples of wavelet matrices (m = 2).

Example 1 Haar wavelet matrix

Example 2 Daubechies wavelet’s two scaling equation is

2N-1
en(z) = Y cken(2z - k),
k=0
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where N is a positive integer. When N = 2, we can obtain Daubechies wavelet matrix:

A_\/i(‘-- 0 1+v3 3+v3 3-v3 1-v3 0 )
T4 0 -1+v3 3-v3 -3-v3 1+v/3 0 :

4
On the other hand, if a wavelet matrix A is given such that it contains only a finite
number of nonzero blocks, satisfiies the conditon (3) and the sum of the elements in the
first row is m2, then, equations (1) and (2) can be solved. The translates and dilates of
the wavelet functions form at least a tight frame; in almost all cases this frame turns out
to be an orthonormal basis (see [8] and [9]). When m = 2, Lawton ([9]) obtained the

following Theorem.

Theorem 1 Assume that mg(€) is a trigonometric polynomial of the form 2-7 Eﬁ:o hpe™,
satisfing

Imo(€)I + [mo(€ +7)2 =1
and mo(0) = 1, define p and (2N ~ 1) x (2N — 1) matrix A respectively as follows.

+00
#(6) = (2m) ™2 ] mo(27%6),

A= (A
and

N
Ak =Y hahiaign, -N+1<LE<N-1.
n=0
If the eigenvalue 1 of A is a single root of eigenpolynomial of A, then {p(- — )};cz are
orthonormal.

Remark 1 As for the convergence of the infinite product in Theorem 1, one may refer
to [1] ( or [9]).

Thus the wavelet matrices can be used to study compactly supported of higher multi-
plicity (i.e. the dilation parameter m) wavelets by means of linear algebra.

3. Factorizations of compactly supported orthogonal wavelet matrix

In this section, we describe all matrices which can give rise to orthogonal wavelets
with compact support. The wavelet matrix A must then contain only a finite number
of nonzero blocks. Without loss of generality, we suppose that A; = 0 whenever k < 0
and k > p for some p and write A = (A9 A; -+ Ap-1). The out of the range blocks
will be automaticality considered to be zero. We will also identify the matrix A and its
extension constructed from A by adding one or more m x m zero blocks to either side. We
can thus add or discard zero blocks at either side and renumber blocks when requested.

Let us focus on the condition (3). We can impose the group structure to the set of the
matrices conforming to equations (3) by using, for example, the following product.
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Definition 3 Let A= (Ao Ay --- Ap-1),B=(Bo By :-- By-1). We define
AxB=(Dy Dy -+ Dpyq-2),
where D; = Z ArBj_.
k

Under this product, the matrices comforming to the equation (3) form a group, the
unit element being the identity matrix of order m and the element inverse to A having
the form

Ainv - ( AT

p—

1 Ag'—z Tt Ag)’ (4)

where matrix AT means transpose of 4 .
In [6], J. Kautsky and R. Turcajova obtained that

Theorem 2 Matrix A = (A A1 -+ Ap—1) satisfies (3) if and only if there exists
Hermitian matrices P;, j = 1,2,---,p — 1, and an orthogonal matrix H such that
AZH*(Pl I—Pl)*(Pz I—Pg)*---*(P_l I—Pp_l). (5)

Then the problem arises, whether the factorization in Theorem 2 is unique. We have
the following result.

Theorem 3 If rank Ao+ rank A,y = m, then the P; in (5) and consequently also the
linear factor (i.e. the factors in (5)) are determined uniquely.

When rank Ag+rank A, ; < m, one has to impose some additional conditions. For
example, one can choose in the process of factorizing always the Hermitian martices having
the lowest possible rank (which is unique).

There are several factorizations similar to the one described here. Their particular
features make them more or less suitable for different applications (see [5]).

4. Biorthogonal Wavelet matrix

The shifted biorthogonal conditions analogous to equation (3) are as follows.

N AAl = boil, ke Z, (6)
leZ

where A = (--- Ag /il fiz -+ +) denotes some matrix. We will focus on here the case
where all the basis functions are compactly supported, that is, both A and A contain only
a finite number of nonzero blocks. Here, we will study these problems: What must A
satisfy so as A satisfying conditions (6) and A contains only a finite number of nonzero
blocks? How do we construct such pairs? Can they be factorized in some way?

When canceling or adding zero square blocks or renumbering blocks, we do the same
with both A and A, because the mutual position of the blocks of A and A is important.
Without loss of generality, we will suppose that A; = /1,- =0, for j < 0, and describe the
exact extent of nonzero blocks in the following way.

— 430 —



Definition 4 We say that

A
is an (I, p, k, g)-biorthogonal pair (or a biorthogonal pair of type (I,p, k,q)) if
¢ A;=0for0<j<I-1,j>1+p, A #0and Aiyp 1 #0;

e A;=0for0<j<k-1,j >k+gq, A #£0and Apyy1 #0.
We can extend the definition of the * product (see Definition 3) to biorthogonal pairs

in the following way:
A B | | AxB
A(*YB([T) 4«B [~

Similarly as in the case of orthogonal wavelets, the biorthogonal pairs form a group
under this product. The unit element is the (0,1,0,1)-biorthogonal pair formed by two
identity matrices; the element inverse to

(Ao Ay -+ A)
o-{ % & A,)}

@inv _ (/i? A?—l e “1(7)1
T\ 47 AL, - AT

is then

We can generalize Theorem 2 to biorthogonal case.

Theorem 4 Let © be a biorthogonal pair of type (I,p,k,q) # (0,p,p— 1,9). Then there
exists an biorthogonal pair T' such that A = © % T is of the type (I,p,k,§), where § < ¢
and exactly one of the following three possibilities occurs:

or
or )
k.

, k

-1,

l
-1,
I, p

Il
=3

)
] a-—{—

k
k

Il S "
I
3

-~
~i il o~
-

o=

Definition 5 If A, A, ; = I, then we call © defined in Definition 4 a biorthogonal
atom. When Ay-1 = Ap-1 = I, we say that the atom is normalized.
By repeated application of Theorem 4, we obtain the next Theorem.

Theorem 5 Every (I,p,k, q)-biorthogonal pair can be factorized into the product of a
(0,1,0,1)-biorthogonal pair, a normalized atom and ! + p — k — 1 biorthogonal pairs.

Suppose that A = (4o 4, --- AP‘2 I) is given. There is a question: when does
a biorthogonal counterpart of the form A = (I A, --- Apy,_2) exist such that

(1)

is a normalized (p, ¢)-atom? The following Theorem replies this question.
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Theorem 6 Let A = (Ap A1 --- Ap_2 I). Then there exists A such that the
biorthogonal pair © is a normalized (p, ¢)- atom if and only if the matrix G

~Ap2 —Ap3 —Apg - —A1 —A
I 0 0 e 0 0
G = 0 I 0 .o 0 0 (8)
0 0 0 - I 0

is nilpotent with index p + q — 2.
5. Symmetric orthogonal wavelet matrices

In some applications, symmetry of wavelets is of importance. More precisely, one
requires each of the sequences {hj}recz and {y;(:)}kez, s =1,2,---,m — 1, in equations
(1) and (2), respectively, to be symmetric or antisymmetric about some point. It is well
known that except for the trivial case of Haar basis, there are no classical (multiplicity
m = 2) compactly supported symmetric wavelets. Usually, when symmetry is required,
biorthogonal wavelets are used, instead. Another possibility, however, is to use higher
multiplicity wavelets.

We consider here only the case when all the rows of the wavelet matrix

A=(4 A -+ Apy)
are symmetric about the middle of the length of A.

Definition 6 If A; = Ap_y—; (j = 0,1,---,p — 1) in Definition 2, then, matrix A =

(Ao A1 - Ap-i) is called centrosymmetric.

Theorem 7 A centrosymmetric matrix A = (A Ay -+ Ap-1) with an even number
of rows satisfies the shifted orthogonality conditions (3) if and only if there exist cen-
trosymmetric linear factors (P; I — P;),j=1,2,---,p— 1, (P; are Harmitian matrices)

and a centrosymumnetric orthogonal matrix H such that

AZH*(Pl I—Pl)*(Pg I-Pz)*-"*(Pp_l I—Pp_.l).

When m, the number of rows, is odd, the situation is more complicated. The simple
fact that T is not an integer, causes a series of problems. But, a complete characterization
similar to the one for m even is still possible. The following Theorem holds.

Theorem 8 A centrosymmetric matric A = (Ag Ay -+ Ap_1) with an odd number
of rows satisfies the orthogonality conditions (3) if and only if

A= H*WI*W2*"'*WP‘1’
where, for j = 1,2,-",17—;1,
Waj—1 = (UzjaUs;_y + ViVF JUzj—leT,FlJ)v
Waj = (Uszg} JUzj—1U'};'—1J + ViV,
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both (Uzj—1 V; JUzj—1J) and (Uz; V; JU,;J) are centrosymmetric orthogonal ma-
trices, J stands for a permutation matrix of the appropriate size.

6. Matrix extension

Because constructions of many wavelets are attributed to matrix extension, matrix
extension is an important and difficult subject in wavelet theory.
In frequency domain, (1) can be rewritten as follows.
€ £, ¢
= mg(— -
) 0( m )90( m )7

m

kg,
$(6) =m 1 S hpeimé(
keZ

where mp(€) = m=3 Y rcz hue ¢ is called symbol function (or low pass filter) associated
with the scaling function ¢. The so—called matrix extension question is: assume that

et 2k
> Imo(6+ —)IP = 1.
k=0 m
How do we find functions m;(§) € C(R), j = 1,2, -,m—1, such that the following matrix
mo(§)  mo(6+ ) mo(€+ ) oo mo(¢+ AmT)

my(€)  mi(E+2)  m(E+3F) o my (64 Amlmy

Mno1() Momo1(6+ 2) mpoa (64 35) o0 myu_g (€ + 2zl

is unitary? This matrix extension is called B—extension.

If m = 2, matrix extension question has been well solved (see {1] and [10]). As for
m > 2, this problem is still open except for several special cases.

In multidimensional wavelet analysis and vector wavelet analysis, there are also anal-
ogous matrix extension problems. But, this problem is more difficult and complicated. In
(11}, Chen and Xiao gave a matrix extension by using a new kind of Householder type
matrix, then apply it to the construction of multivariate wavelet vectors and the construc-
tion of compactly supported multivariate wavelets. In [12], Lawton, Lee and Shen gave
an algorithm for matrix extension to construct orthogonal wavelets, and S. S. Goh et al
([13]) generalized this algorithm to biorthogonal case. In vector case, Jiang ([14] and [15])
did a series of works. His results provided symmetric paraunitary matrix extension and
parametrization of correcponding symmetric orthogonal multifilter banks. These matrix
extension problems were considered under certain conditions, but in the general case, the
problems have not been solved.

In order to show problem of matrix extension,we list here two results. In the following
process, we consider the case which m = 2 and multidimension. Suppose dimensionality
isd.

Suppose that {V;} is a MRA in L?*(RY) , ¢(z) is the corresponding scaling function
and symbol function is

mo(€) =277 3 hye e,
k
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Then the refinable equation is
d
p(z) = 27 ) hup(2z — k). (9)
k

Let d < 3, then, there exists a one-to-one mapping x from E4 to Ey satisfying

x(0)=0, (x(v)+x(w))(v+p) isodd, Vv,p€ Eqv#p,

where E; denotes the set of all vertices of unit cube [0,1)4 in R? (one refers to [16]). Then
there is the following conclusion.

Theorem 9 Assume that (z) = g(c—=z), ¢ € Z4, mo(ur) = 64, mo(€) € C(RY), d < 3,
and
Y Imo(€ + pm))? = 1.
pEEy
Define )
m, (€) = e‘_X(")fmo(f + vr), if v-c isevenand v #0,
PTT exWm(€ 4 ur), if v-¢ isoddand v #0.

Then matrix M(€) = (m, (€ + pur)), . is unitary.
By (9),
o(z) =213 dip(22 — k),
k
where dj, = 2'§hk .
Let

Poo(€) =Y hage™.
1

Then we have another result of matrix extension.

Theorem 10 Suppose that the scaling function ¢ in Definition 1 satisfies p(z) = @(c—z),
c€ Z%and d > 1. Let (P,(£))veE, = (Popu(€))veE,. Define

P,(1+P, _
P, (f): __lgﬁﬁla VEEd; V'-)éoa “—0’
v PP,

_611,“ + 1?15%1 v,pu € Eq - {0}

Then (P, .(€))v ucE, is unitary.

Matrix extension in Theorem 10 is called A-extension . In fact, A- extension is
equivalent to B—extension (see [10]). Thus we think that there is no difference between
the two extension.

7. Matrix extension in periodic case

It is well known that one must solve matrix extension problem in order to obtain
the construction of wavelets. As for nonperiodic case, matrix extension problem is a very
difficult one which was introduced in Section 6. However, the periodic case is different from
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nonperiodic one. In [17)( also see [18]), we discussed the problem and completely solved
matrix extension problem of periodic case by using matrix decomposition. Moreover, we
presented the constructive process of multidimensional biorthogonal periodic multiwavelets
with a dilation matrix A, where the dilation matrix A means that it is a integer matrix
whose eigenvalues lie outside the closed unit disk. To the construction of multidimensional
biorthogonal periodic multiwavelets, an algorithm was given and an example was also
provided.

8. Others

There are many other matrix applications in wavelet analysis. For example, in mul-
tidimensional wavelet theory, vector wavelet analysis , multidimensional wavelet analysis
with matrix dilation, etc., matrix approach was frequently used. As space is limited, it is
impossible to list all development and results. One refers to the references [10]-[20].
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