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Incorrect Results for F-Convex Functions
and E-Convex Programming *
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(Dept. of Math. & Information Science, Guangxi University, Nanning 530004, China)

Abstract: A class of functions and a sort of nonlinear programming called respectively
E-convex functions and E-convex programming were presented and studied recently by
Youness in [1]. In this paper, we point out the most results for E-convex functions and
E-convex programming in [1] are not true by six counter examples.
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1. Definitions and some results in [1]

In this section, we recall the relatived definitions and results given in [1] which will be
used in our study.
Definition 1 (Def. 2.1 in [1]) A set M C R" is said to be an E-convex set, if there exists
amap E : R™ — R"™ such that

AE(z)+ (1 - A)E(y) € M, Vz,y € M,YX € [0,1]. (1)

Proposition 1 Ifset M C R" is an E-convex set, then E(M) C M.

Definition 2 (Def. 3.1 in [1]) A function f : R® — R is said to be E-convex on a set
M C R" if there is a map E : R® — R™ such that M is an E-convex set and

FAE(z) + (1 - NE(y)) < Af(E(2)) + (1 - NSf(E(), Ve,ye M, Ae[0,1].  (2)
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Furthermore, if the inequality signs in formula (2) is strict for E(z) # E(y) and X € (0,1),
then f is called strictly E-convex.

Remark 1 The definition of strict E-convexity in [1] is not clear and definite, since the
conditions for formula (2) being strict were not given.

Definition 3 (Def. 3.21in [1]) Let $ C R" X R and E : R™ — R". The set § is said to be
E-convex if (z,a),(y,B) € S imply

(AE(z)+ (1 - XN)E(y),Aa+(1-X)8 )€ S, VAe[0,1]. (3)
Definition 4 (See Section 4 in [1]) The nonlinear programming problem

@ w0 1)
st. zeM={zeR": ¢gi(z)<0,i€el}.

is said to be an E-convex programming if there exists a map E : R® — R™ such that the
functions f,g; (i € I): R* — R all are E-convex functions on R".

Throughout this paper, Problem (P) is always assumed to be an E-convex program-
ming.

Theorem 1 (Theorem 3.1 in [1]) A numerical function f defined on an E-convex set
M C R" is E-convex on M iff its E-epigraph E — e(f) is E-convex on R™ x R, where

E-e(f) = {(z,a): = € M,a € R f(E(z)) < a}.

Theorem 2 (Theorem 4.1 in [1]) The feasible set M of (P) is an E-convex set.

Theorem 3 (Theorem 4.2 in [1]) Assume that E(M) is convex and Z is a solution of the
following problem:

(Pg) min{(foE)(z)| z € M}
Then E(Z) is a solution of Problem (P), where (f o E)(z) = f(E(z)).

Theorem 4 (Theorem 4.3 in [1]) Let E(M) be a convex set. If 2° = E(z°) € E(M) is a
local minimum of Problem (P) on M, then z° is a global minimum of Problem (P) on M.

Theorem 5 (Theorem 4.4 in [1]} Assume that E(M) is a convex and f is strictlyE-
convex. Then, the solution of Problem (Pg) is unique.

Theorem 6 (Theorem 4.5 in [1]) Let E(M) is a convex set and let fo E, g;0 E (i € I)
all be differebtiable on M. Assume that (z*,y") is a solution of the following problem:

Vz[(f o E)(z*) 4+ y*(gi 0 E)(2")] = 0, )
y* (g0 E)z*) =0, (g:i0 E)2*) <0, y* >0, Vi€ L

Then, E(z*) is an optimal solution of Problem (P).

Theorem 7 (Theorem 4.6 in [1]) Let Q2 be the set of optimal solution of (P). Then 2 is
a convex set.
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2. Counter examples for the above theorems

In this Section, we give six examples to show that the seven theorems given above are
incorrect.

Example 1 A counter example for the necessity of Theorem 1.
Consider set M and maps E, f : R — R defined as

M=R=(-o0,400), Blz)= -2, f(:c):{ L ife>0

-z, if2<0.
Then M is an E-convex set, and f is an E-convex function on M since
FAE(2) + (1 = NE(®)) = M(E(@)) + (1 - N F(EW)), Yo,y € M, YA€ [0,1].
But the E-epigraph
E-e(f) = {(2,0): = € M,a € R, f(E(2)) = 2% < a},

is not E-convex on R?, since for (z,a) = (1,1),(y,8) = (2,4) € E —¢(f) and A = }, one
has
(AE(z) + (1 - N)E(y), Aa+(1-X)B ) =(-3,3), (-3)" £33,

that is ( AE(z) + (1 — ME(y), Aa+ (L= A)B ) = (=3,3) € E — e(f).

Example 2 A counter example for the sufficiency of Theorem 1.
Let M =[0,1] C R, f(2) = —z%,E(z) = J/z,2 € M .
Then M is an E-convex set, and

E-e(f)={(s,a): 0<z<1,a€R,f(E(z) = -z < a}.

At first, we prove that the set £ — ¢(f) is E-convex on R x R as follows. Let
(z,a),(y,B) € E — e(f),X € [0,1], then

-Vz<—z<a, ~/y<-y<B, AE(z)+(1-N)E(y) € M,
(AE(z) + (1= N)E(y), da+(1~2)B) = ( MWz +(1=A)yF, da+(1-A)8),
Mz - (1= 2)/y <Aa+(1-N)B.

Thus
(AE(z)+ (1 =MN)E(y), da+(1-X)B )€ E—e¢(f).

Therefore set E — e(f) is E-convex on R x R from Definition 3.
Secondly, one can conclude the given function f is not E-convex on the E-convex set
M,sincefora =0e M,y=1¢ M, = %, one gets

FAB() + (1 - NBW)) = £(3) = ~; > ~3 = M(E@) + (1 - NF(EW)).
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Example 3 A counter example for Theorem 2, i.e., Theorem 4.1 in [1].
Let maps g, E : R — R be given as

) =, if 2 <0 _
g(z)_{ 1—13, lfﬂ!ZO, E(z)—|x|.

Then the function g is E-convex on R, see Fig. 1, since
9(AE(z) + (1 - A)E(y)) = Ag(E(z)) + (1 - A)g(E(y)), Vz,y € R, A € [0,1].
But the feasible set
M={z: g(z) <0} =(~00,0)U[1,+00)

is not E-convex frome Proposition 1, since E(M) = (0,+00) ¢ M.

9(z)

gz)=1-z

9(z) ==

Fig.1 Example 3. A conuter example for Theorem 2, i.e., Theorem 4.1 in [1]
Example 4 A counter example for Theorems 3,4, i.e., Theorems 4.2, 4.3 in [1].
Consider functions f,g,F : R — R defined as
-2, ifz<-1;
f(z) = 2, if —1<e<Q () = 1+2, ifz<0;
) ~z, f0<2<; 2= l—z, ifz>0,
-1, ifz>1,
(i) Show that Thm. 3 is not true. See Fig. 2, one knows that
M={z:9(z) <0} =(-o0,-1]U[1,4+0), E(R) = [0,+), E(M) = [1,+00),

(fo E)z) = f(l2]) = { :'ﬁl’ g ?zlszlzll,< )

furthermore, f, g all are E-convex on R, E(M) is a convex set .
It is clear that £ = -2 is a solution of (Pg), see Fig. 2, but E(Z) = 2 is not a solution
of Problem (P) since f(2) = -1 > f(-2)=-2.
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1
g(==)=1+/\Q=1'z
-2 -1 1 2 X -1 1 X
f(z) = -1 0E=-1 oE=-1
fz)===
J(z) =2z \
f(z)= -2

Fig.2 Example 4. A conuter example for Theorem 2, i.e., Theorem 4.1 in [1]

Example 5 A counter example for Theorems 5,6, i.e., Theorems 4.4, 4.5 in [1].
Let maps f,g9,E : R — R be given as

f(z) = { :Ilﬁzl, g t‘} i i: g(z) = —%:c, E(z) = 0.

Then, see Fig. 3, we know that functions f and ¢ all are E-convex on R, and
M={z: g(z) <0} =1[0,+00), E(M)={0}; (foE)z)=0, (goE)z)=0, Vz € R.

Vel(f o E)(z)] = Va[(g o E)(z)] =0, Yz € R.

(i) Show that Theorem 5 is not true. From the above discusses , we know that E(M)
is a convex set, and f is strictly E-convex on R in the sense of Definition 2. But the
solution of Problem (Pg) is not unique since each z € M is a solution of Problem (Pg).

(ii) Show that Theorem 6 is not true. In view of the above analyses, one knows that
the functions fo E, go E all are differentiable on M, and each (z*,y") € R? with y* > O is
a solution of Problem (4), but E(z*) = 0 is not a solution of Problem (P) since its optimal
solution set 2 = [1, +00).

Remark 2 If the strict E-convexity of f on M is defined as
FAE(z) + (1 - NE(y)) < Af(E(z)) + (1 - Nf(E(y)), V2,5 € M,z #y,A € (0,1),
then Theorem 5, i.e., Theorem 4.4 in [1] is true.

Example 6 A counter example for Theorem 7, i.e., Theorem 4.6 in [1].
Let maps f,g,E : R — R be given as

f(z)={ T hZE s@ =0 E@= el
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Then, see Fig. 4, it is clear that functions f and g all are E-convex on R, and
M={z: g(z) <0} =(~-00,+0) =R, E(M) = E(R) = [0,+00).

But the optimal solution set = (—o00,—4] U [4,+00) is not a convex set. Furthermore
is not an E-convex set from Proposition 1, since E(Q) = [2,4+00) ¢ Q.

Y Y
1

g(z) = —32

1 1 X -4 2 4 X

flz)=-1

f(z) 7 —lel fz) = -4 J@F -2l fz)= -2

Fig.3 Example 5 Fig.4 Example 6
A conuter example for Theorems 5, 6 A conuter example for Theorem 7
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