Are the Primitives of Fuzzy (K) Integrable Funcations Differentiable Almost Everywhere *

GONG Zeng-tai^{1,2}, WU Cong-xin³

- (1. College of Math. & Info. Sci., Northwest Normal University, Lanzhou 730070, China;
- 2. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
- 3. Dept. of Math., Harbin Institute of Technology, Heilongjian, 150001, China)

Abstract: In this paper, an example is given. It shows that there exists a fuzzy-valued function which is (K) integrable on [a,b], but its primitive is not differentiable almost everywhere in [a,b].

Key words: fuzzy-number; fuzzy-valued function; derivative.

Classification: AMS(2000) 28E10, 03E72/CLC number: O159.2

Document code: A Article ID: 1000-341X(2003)04-0604-05

1. Notations and preliminaries

How to characterize the derivatives, in both of real analysis and fuzzy analysis, is an important problem. For a real-valued function, if it is Lebesgue integrable or Henstock integrable^[2] on [a, b], then the primitive is differentiable almost everywhere in [a, b]. Furthermore, the derivative equals the integrand function almost everywhere in [a, b]. For a fuzzy-valued function which is (K) integrable on [a, b] (of course, it is fuzzy Henstock integrable^[3]), the conclusion does not hold. In this paper, we give a fuzzy-valued function which is (K) integrable on [0, 1], but its primitive is not differentiable almost everywhere in [0, 1].

Let $\tilde{A} \in \tilde{F}(R)$ be a fuzzy subset on R. If \tilde{A} is normal, convex, upper semicontinuous and has compact support, we say \tilde{A} is a fuzzy number. Let \tilde{R}^c denote the set of all fuzzy numbers^[1,4].

For $\tilde{A}, \tilde{B} \in \tilde{R}^c$, the addition and scalar nultiplication are defined by the equations

$$[\tilde{A}+\tilde{B}]^r=[A]^r+[B]^r, \text{ i.e. } A^r_-+B^r_-=[\tilde{A}+\tilde{B}]^r_- \text{ and } A^r_++B^r_+=[\tilde{A}+\tilde{B}]^r_+;$$

Foundation item: Supported by National Natural Science Found of China (40235053), Natural Science Foundation of Gausu Province (ZS011-A25-012-Z) and NWNU-KJCXGC-

Biography: GONG Zeng-tai (1965-), male, Ph.D., Associate Professor.

^{*}Received date: 2001-04-17

 $[k\tilde{A}]^r = k[\tilde{A}]^r$, i.e. $[k\tilde{A}]_-^r = \min\{kA_-^r, kA_+^r\}$ and $[kA]_-^r = \max\{kA_-^r, kA_+^r\}$; respectively.

Define

$$D(\tilde{A}, \tilde{B}) = \sup_{r \in [0,1]} d([A]^r, [B]^r) = \sup_{r \in [0,1]} \max\{|A_-^r - B_-^r|, |A_+^r - B_+^r|\},$$

where d is Hausdorff metric. If we write $A^r = \{x : A(x) \ge r\}$, then $A^r = [A_-^r, A_+^r]^{[1,3,4]}$. $D(\tilde{A}, \tilde{B})$ is called the distance between \tilde{A} and \tilde{B} .

Definition 1.1^[1,4] Let $\tilde{F}:[a,b]\to \tilde{R}^c$. Then (K) integral of $\tilde{F}(x)$ over [a,b], denoted $(K)\int_a^b \tilde{F}(x) dx$, is defined levelwise by the equation

$$[\int_a^b \tilde{F}(x) \mathrm{d}x]^r = \{ \int_a^b f(x) \mathrm{d}x : f : [a, b] \to R \text{ is a measurable selection for } F^r \}$$

for all $r \in [0,1]$.

A fuzzy-valued function \tilde{F} is said to be strongly measurable on [a,b] if F_{-}^{r} and F_{+}^{r} are (L) measurable for all $r \in [0,1]$ (this definition is equivalent to the one used by Kaleva [1]).

A fuzzy-valued function \tilde{F} is called integrably bounded if there exists an (L) integrable function h such that $|\dot{x}| \leq h(x)$ for all $\dot{x} \in F^r(x)$.

An integrably bounded and strongly measurable mapping is said to be (K) integrable on [a,b] if the level set $\{\int_a^b \tilde{F}(x) \mathrm{d}x\}^r : r \in [0,1]\}$ determines a fuzzy number $\tilde{A} = \int_a^b \tilde{F}(x) \mathrm{d}x$. In the sequel we denote $\int_a^b \tilde{F}(x) \mathrm{d}x$ as $(K) \int_a^b \tilde{F}(x) \mathrm{d}x$ and $\tilde{F} \in K[a,b]$.

Theorem 1.1^[4] Let $\tilde{F}:[a,b]\to \tilde{R}^c$ be a fuzzy-valued function. Then $\tilde{F}\in K[a,b]$ if and only if $F_-^r(x), F_+^r(x)\in L[a,b]$ for any $r\in[0,1]$. Furtheremore

$$[(K)\int_a^b \tilde{F}(x)\mathrm{d}x]^r = [(L)\int_a^b F_-^r(x)\mathrm{d}x, (L)\int_a^b F_+^r(x)\mathrm{d}x].$$

Theorem 1.2^[1] Let $\tilde{F}, \tilde{G}: [a,b] \to \tilde{R}^c$ be fuzzy-valued functions and $k \in R$. Then

(1)
$$(K)$$
 $\int_a^b (\tilde{F} + \tilde{G}) dx = (K) \int_a^b \tilde{F} dx + (K) \int_a^b \tilde{G} dx;$

(2)
$$(K)$$
 $\int_a^b k\tilde{F} dx = k(K) \int_a^b \tilde{F} dx;$

(3) $D(\tilde{F}, \tilde{G})$ is (L) integrable, and

$$D((K)\int_a^b \tilde{F}(\boldsymbol{x})\mathrm{d}\boldsymbol{x},(K)\int_a^b \tilde{G}(\boldsymbol{x})\mathrm{d}\boldsymbol{x}) \leq (L)\int_a^b D(\tilde{F},\tilde{G})\mathrm{d}\boldsymbol{x};$$

- (4) $\tilde{F}(x)$ is (K) integrable on any subinterval of [a,b].
- 2. Differentiablility of the primitive

Definition 2.1^[1,4] Let $\tilde{F}:[a,b] \to \tilde{R}^c$. $\tilde{F}(x)$ is said to satisfy the condition (H) on [a,b], if for any $x_1, x_2 \in [a,b]$ satisfying $x_1 < x_2$, there exists $\tilde{A} \in \tilde{R}^c$ such that

$$\tilde{F}(x_2) = \tilde{F}(x_1) + \tilde{A}.$$

For brevity, we always assume the condition (H) is satisfied for the "-" operation of fuzzy numbers throughout this paper.

Definition 2.2^[1,4] A fuzzy-valued function $\tilde{F}:[a,b]\to \tilde{R}^c$ is said to be differentiable at $x_0\in[a,b]$, if there exists a $\tilde{F}'(x_0)$ such that the limits

$$\lim_{h\to 0+}\frac{\tilde{F}(x_0+h)-\tilde{F}(x_0)}{h}, \lim_{h\to 0+}\frac{\tilde{F}(x_0)-\tilde{F}(x_0-h)}{h}$$

exist and equal $\tilde{F}'(x_0)$. Here the limits is taken in the metric space (\tilde{R}^c, D) .

Remark 2.2.1^[1] Let $\tilde{F} \in K[a,b]$ and $\tilde{G}(x) = (K) \int_a^x \tilde{F}(t) dt$ be the primitive of $\tilde{F}(x)$ on [a,b]. Then $\tilde{G}(x)$ satisfies the condition (H).

Remark 2.2.2^[1] Let $\tilde{F}:[a,b] \to \tilde{R}^c$ be continuous on [a,b]. Then, $\tilde{F} \in K[a,b]$ and

$$\tilde{G}'(x) = \tilde{F}(x),$$

where $\tilde{G}(x) = (K) \int_a^x \tilde{F}(t) dt$ is the primitive of $\tilde{F}(x)$ on [a, b].

Example 2.1 Define

$$ilde{F}(oldsymbol{x}) = \left\{egin{array}{ll} 0, & ext{if } s
otin [0,1], \ oldsymbol{x}, & ext{if } s \in (0,1], \ 1, & ext{if } s = 0. \end{array}
ight.$$

Then,

$$F_-^{m r}(m x) \equiv 0,$$
 $ilde F_+^{m r}(m x) = \left\{egin{array}{ll} 0, & ext{if } 0 \leq m x < m r, \ 1, & ext{if } m r < m x \leq 1. \end{array}
ight.$

Note that $F_{-}^{r}(x)$, $F_{+}^{r}(x)$ are (L) integrable for $r \in [0,1]$. From the theorem 1.1, $\tilde{F} \in K[a,b]$, and $\tilde{G}(x) = (K) \int_{a}^{x} \tilde{F}(t) dt$ is determined by the equation

$$\tilde{G}^r(x) = [G_-^r(x), G_+^r(x)], \quad r \in [0, 1],$$

where

$$G^{r}_{-}(x) \equiv 0, \quad G^{r}_{+}(x) = \left\{ egin{array}{ll} 0, & ext{if } 0 \leq x < r, \ x - r, & ext{if } r \leq x \leq 1. \end{array}
ight.$$

For any $x_0 \in [0,1]$ and $x > x_0$, we have

$$D(\frac{\tilde{G}(x) - \tilde{G}(x_0)}{x - x_0}, \tilde{F}(x_0)) = \frac{1}{x - x_0} \times D(\tilde{G}(x) - \tilde{G}(x_0), (x - x_0)\tilde{F}(x_0))$$

$$= \frac{1}{x - x_0} \times sup_{r \in [0,1]} \{ |G_+^r(x) - G_+^r(x_0) - (x - x_0)F_+^r(x_0)| \}$$

$$\geq \frac{1}{x - x_0} \times sup_{r \in (x_0,x]} \{ |G_+^r(x) - G_+^r(x_0) - (x - x_0)F_+^r(x_0)| \}$$

$$= \frac{1}{x - x_0} \times sup_{r \in (x_0,x]} \{ |(x - r) - 0 - (x - x_0)0| \} = 1.$$

Lemma 2.1^[1] Let $\tilde{G}(x)$ be differentiable at $x \in [a,b]$. Then for any $r \in [0,1]$, $G_{-}^{r}(x)$, $G_{+}^{r}(x)$ are differentiable at x. Furthermore

$$[\tilde{G}'(x)]^r = [(G_-^r(x))', (G_+^r(x))'].$$

Theorem 2.1 Let $\tilde{F} \in K[a,b]$, and $\tilde{G}(x) = (K) \int_a^x \tilde{F}(t) dt$ be the primive. If $\tilde{G}(x)$ is differentiable almost everywhere, then

$$\tilde{G}'(x) = \tilde{F}(x)$$

for almost all $x \in [a,b]$, i.e., if there exists subset $B \subset [a,b]$ with L(B) = 0 such that $\tilde{G}(x)$ is differentiable for any $x \in [a,b] \setminus B$, then there exists a subset $A \subset [a,b] \setminus B$ with L(A) = 0 such that $\tilde{G}'(x) = \tilde{F}(x)$ for any $x \in [a,b] \setminus (A \cup B)$.

Proof Since $\tilde{G}(x)$ is differentiable almost everywhere in [a,b], there exists a subset $B \subset [a,b]$ with L(B)=0 such that $\tilde{G}(x)$ is differentiable for any $x \in [a,b] \setminus B$. By lemma 2.1, for any $r \in [0,1]$, $G_-^r(x)$, $G_+^r(x)$ are differentiable for any $x \in [a,b] \setminus B$, and

$$[\tilde{G}'(x)]^r = [(G_-^r(x))', (G_+^r(x))'].$$

That is,

$$[\tilde{G}'(x)]_{-}^{r} = (G_{-}^{r}(x))', \quad [\tilde{G}'(x)]_{+}^{r} = (G_{+}^{r}(x))'.$$

Since $\tilde{G}(x)$ is the primitive of $\tilde{F}(x)$ on [a,b], for any $r \in [0,1]$,

$$(G_{-}^{r}(x))' = F_{-}^{r}(x)$$
 a.e $in[a,b], (G_{+}^{r}(x))' = F_{+}^{r}(x)$ a.e $in[a,b].$

This follows that there exists $A \subset [a,b] \setminus B$ with L(A) = 0 such that

$$[\tilde{G}'(x)]_{-}^{r} = (G_{-}^{r}(x))' = F_{-}^{r}(x), \quad [\tilde{G}'(x)]_{+}^{r} = (G_{+}^{r}(x))' = F_{+}^{r}(x)$$

for all $x \in [a,b] \setminus (A \cup B)$ and all rational numbers $r \in [0,1]$. By the left continuity of $[\tilde{G}'(x)]_{-}^r$, $[\tilde{G}'(x)]_{+}^r$, $F_{-}^r(x)$ and $F_{+}^r(x)$ at $r \in [0,1]$, we have

$$[\tilde{G}'(x)]_{-}^{r} = (G_{-}^{r}(x))' = F_{-}^{r}(x), \ \ [\tilde{G}'(x)]_{+}^{r} = (G_{+}^{r}(x))' = F_{-}^{r}(x).$$

for all $x \in [a, b] \setminus (A \cup B)$ and all $r \in [0, 1]$. It follows that

$$\tilde{G}'(x) = \tilde{F}(x)$$
 a.e $in[a,b]$.

This completes the proof.

By Theorem 2.1, we know that the primitive $\tilde{G}(x)$ of $\tilde{F}(x)$ on [0,1] in Example 2.1 is not differentiable almost everywhere in [a,b]. That is, there exists a subset $E \subset [0,1]$ with L(E) > 0, $\tilde{G}(x)$ is not differentiable on E.

References:

- [1] KLEVA O. Fuzzy differential equations [J]. Fuzzy Sets and Systems, 1987, 24: 301-317.
- [2] LEE P Y. Lanzhou Lectures on Henstock Integration [M]. World Scientific Publishing, Singapore, 1989.
- [3] WU Cong-xin, GONG Zeng-tai. On Henstock integral of interval functions and fuzzy-valued functions [J]. Fuzzy Sets and Systems, 2000, 115: 377-391.
- [4] WU Cong-xin, MA Ming. Embedding problem of fuzzy number space: Part II [J]. Fuzzy Sets and Systems, 1992, 45: 189-202.

模糊数值函数的积分原函数是否几乎处处可导

巩增泰1,2,吴从炘3

- (1. 西北师范大学数学与信息科学学院, 甘肃 兰州 730070;
- 2. 中国科学院寒区旱区环境与工程研究所, 甘肃 兰州 730000;
- 3. 哈尔滨工业大学数学系, 黑龙江 哈尔滨 150001)

摘 要: 对于模糊数值函数的积分原函数的可导性问题,本文构造性地给出一反例. 说明存在 (K) 可积的模糊数值函数其积分原函数并不是几乎处处可导的.

关键词: 模糊数; 模糊数值函数; 导数.