Homomorphisms between Two Sets of Fuzzy Subsemigroups *

LI Yong-hua¹, XU Cheng-xian²

- (1. Dept. of Math., South China Normal University, Guangzhou 510631, China;
- 2. School of Science, Xi'an Jiaotong University, Shaanxi 710049, China)

Abstract: Let S and T be semigroups. F(S) and $F_s(S)$ denote the sets of all fuzzy subsets and all fuzzy subsemigroups of S, respectively. In this paper, we discuss the homomorphisms between $F(S)(F_s(S))$ and $F(T)(F_s(T))$. We introduce the concept of fuzzy quotient subsemigroup and generalize the fundamental theorems of homomorphism of semigroups to fuzzy subsemigroups.

Key words: fuzzy subsemigroup; fuzzy quotient semigroup; fuzzy congruence; homomorphism.

Classification: AMS(2000) 20M10/CLC number: O159

Document code: A Article ID: 1000-341X(2003)04-0615-08

1. Introduction

In this paper, S, T always denote semigroups. If S is homomorphic (isomorphic) to T, it is denoted by $S \sim T(S \cong T)$.

Let X be a non-empty set. We call a mapping $\mu: X \to [0,1]$ a fuzzy subset of X. The collection of all fuzzy subset of X is denoted by F(X). A mapping $\mu: S \to [0,1]$ is called a fuzzy subsemigroup of S, if

$$\mu(a,b) \geq \mu(a) \wedge \mu(b)$$

for all $a, b \in S$. The set of all fuzzy subsemigroup of S is denoted by $F_s(S)$.

In [2],[3] and [4], the fuzzy congruences on a semigroup were studied with many results. In this paper, it is proved that F(S) is a semigroup; $F_s(S)$ is a subsemigroup of F(S); if $S \sim T(S \cong T)$, then

$$F(S) \sim F(T)(F(S) \cong F(T)), F_s(S) \sim F_s(T)(F_s(S) \cong F_s(T)), F(S) \sim F(S/\rho);$$

and if $\rho \leq \sigma$, then $F((S/\rho)/(\sigma/\rho)) \cong F(S/\sigma)$, where ρ, σ are fuzzy congruences on S. We introduce the concept of fuzzy quotient subsemigroup, and generalize the fundamental

^{*}Received date: 2001-03-13

Foundation item: Supported by NNSF of China (19971028) and Natural Science Foundations [(011438)(021073),(Z02017)] of Guangdong Province.

Biography: LI Yong-hua (1955-), Ph.D., Associate Professor.

theorems of homomorphism of semigroup to fuzzy subsemigroup (see Theorem 4.9).

2. Preliminaries

A mapping $\rho: X \times X \to [0,1]$ is called a fuzzy relation on X. Let ρ and σ be two fuzzy relations on $X, \rho \leq \sigma$ means $\rho(a,b) \leq \sigma(a,b)$ for all $a,b \in X$.

Definition 2.1 A fuzzy relation ρ on a semigroup S is called a fuzzy equivalence relation on S, if, for all $a, b, c \in S$,

- (1) $\rho(a,a) = 1$,
- (2) $\rho(a,b)=\rho(b,a),$
- (3) $\rho(a,c) \geq \min(\rho(a,b),\rho(b,c)) = \rho(a,b) \wedge \rho(b,c).$

Furthermore, if ρ also satisfies the following condition:

(4) $\rho(ab,cd) \ge \rho(a,c) \land \rho(b,d)$ (or $\rho(ac,bc) \ge \rho(a,b)$ and $\rho(ca,cb) \ge \rho(a,b)$), then ρ is said to be a fuzzy congruence on S.

The notation $Con_f(S)$ denotes the set of all fuzzy congruences on S.

It is not difficult to prove that a fuzzy relation ρ on S is a fuzzy congruence if and only if $\rho^t = \{(a,b) \in S \times S : \rho(a,b) \ge t\}$ is a congruence on S for all $t \in [0,1]$.

Let ρ be a fuzzy equivalence relation on S. For each $a \in S$ a fuzzy subset ρ_a of S is defined as $\rho_a(x) = \rho(a, x)$ for all $x \in S^{[3]}$.

Lemma 2.2^[3] Let ρ be a fuzzy equivalence (congruence) relation on S, and $a,b\in S$. Then

$$\rho_a = \rho_b$$
 if and only if $\rho(a, b) = 1$.

Let $A, B \in F(S)$, then the product $A \circ B$ is defined by, for all $a \in S$,

$$(A \circ B)(a) = \begin{cases} \sup_{a=xy} \min\{A(x), B(y)\}, \\ 0, \text{ if } a \text{ is not expressible as } a = xy. \end{cases}$$
(A)

For $\rho \in \operatorname{Con}_f(S)$, we write $S/\rho = \{\rho_a : a \in S\}$.

Lemma 2.3^[3] Let $\rho \in \operatorname{Con}_f(S)$ and $a, b \in S$. Define the multiplication in S/ρ by $\rho_a \rho_b = \rho_{ab}$ for all $\rho_a, \rho_b \in S/\rho$. Then S/ρ is a semigroup.

Lemma 2.4 For all $\rho \in \operatorname{Con}_f(S)$, S/ρ is isomorphic to S/ρ^1 .

Let f be a homomorphism from S onto T, $A \in F(S)$ and $B \in F(T)$. Define mappings

$$\theta_f: F(S) \to F(T), \theta_f(A)(t) = \sup_{f(s)=t} A(s) \text{ for each } t \in T,$$
 (B)

$$\theta_f^{-1}: F(T) \to F(S), \theta_f^{-1}(B)(s) = B(f(s)) \text{ for each } s \in S$$
 (C)

and fuzzy point $x_{\lambda} \in F(S)(\lambda \in (0,1])$

$$m{x}_{\lambda}(a) = \left\{ egin{array}{ll} \lambda, & a = m{x} \ 0, & a
eq m{x} \end{array}
ight. ext{ for all } a \in S.$$

3. The homomorphisms between F(S) and F(T)

Lemma 3.1 F(S) is a semigroup with respect to the operation \circ .

Proof It is obvious that $A \circ B \in F(S)$ for all $A, B \in F(S)$. Now, let $A, B, C \in F(S)$. Then, for $a \in S$, we suppose there exist $i, j, k \in S$ such that a = ijk, and A(i) > 0, B(j) > 0 and C(k) > 0.

$$(A \circ (B \circ C))(a) = \sup_{a=st} \min\{A(s), (B \circ C)(t)\} = \sup_{a=st} \min\{A(s), \sup_{t=uv} \min\{B(u), C(v)\}\}$$

$$= \sup_{a=st} \min\{s_{A(s)}(s), \sup_{t=uv} \min\{u_{B(u)}(u), u_{C(v)}(v)\}\}$$

$$= \sup_{a=st} \min\{s_{A(s)}(s), \sup_{t=uv} (uv)_{\min\{B(u), C(v)\}}\}$$

$$= \sup_{a=st} \sup_{t=uv} \min\{s_{A(s)}(s), (uv)_{\min\{B(u), C(v)\}}\}$$

$$= \sup_{a=st} \sup_{t=uv} \{(s(uv))_{\min\{A(s), B(u), C(v)\}}\}$$

$$= \sup_{a=st} \sup_{t=uv} \{(s(uv))_{\min\{A(s), B(u), C(v)\}}\}$$

$$= \sup_{a=sv} \sup_{x=su} \{((su))_{\min\{A(s), B(u), C(v)\}}\}$$

$$= \sup_{a=xv} \sup_{x=su} \min\{(su)_{\min\{A(s), B(u)\}}, v_{C(v)}\}$$

$$= \sup_{a=xv} \sup_{x=su} \min\{(su)_{\min\{A(s), B(u)\}}, v_{C(v)}\}$$

$$= \sup_{a=xv} \min\{\sup_{x=su} \min\{A(s), B(u)\}, C(v)\}$$

$$= \sup_{a=xv} \min\{\sup_{x=su} \min\{A(s), B(u)\}, C(v)\}$$

$$= \sup_{a=xv} \min\{(A \circ B)(x), C(v)\} = ((A \circ B) \circ C)(a).$$

It means that F(S) is a semigroup. \square

Theorem 3.2 If there is a homomorphism from S onto T, then F(S) is homomorphic to F(T).

Proof According to the condition, there exists a homomorphism f from S onto T. By (B), we know that $\theta_f(A) \in F(T)$ for all $A \in F(S)$. Hence θ_f is a mapping from F(S) to F(T). Notice that, for all $B \in F(T)$, $\theta_f^{-1}(B) \in F(S)$ and

$$\theta_f(\theta_f^{-1}(B))(t) = \sup_{f(s)=t} \theta_f^{-1}(B)(s) = \sup_{f(s)=t} B(f(s)) = B(t).$$

It is deduced that θ_f is surjective. Next, we only show $\theta_f(A \circ B) = \theta_f(A) \circ \theta_f(B)$ for all $A, B \in F(S)$. Let $A, B \in F(S)$. For $t \in T$, we suppose there exists $j, k \in S$ such that f(jk) = t, A(j) > 0 and B(k) > 0. Then,

$$\theta_f(A \circ B)(t) = \sup_{f(s)=t} (A \circ B)(s) = \sup_{f(s)=t} \sup_{s=jk} \min\{A(j), B(k)\},$$

and

$$(\theta_f(A)\circ\theta_f(B))(t)=\sup_{t=xy}\min\{\theta_f(A)(x),\theta_f(B)(y)\}=\sup_{t=xy}\min\{\sup_{f(u)=x}A(u),\sup_{f(v)=y}B(v)\}.$$

It is clear that

$$\sup_{f(s)=t}\sup_{s=jk}\min\{A(j),B(k)\}\leq \sup_{t=xy}\min\{\sup_{f(u)=x}A(u),\sup_{f(v)=y}B(v)\}.$$

If $\theta_f(A \circ B)(t) < (\theta_f(A) \circ \theta_f(B))(t)$, then

$$\sup_{t=xy} \min \{ \sup_{f(u)=x} A(u), \sup_{f(v)=y} B(v) \} - \sup_{f(s)=t} \sup_{s=jk} \min \{ A(j), B(k) \} > 0.$$

Hence there exist $u, v \in S$ and $\varepsilon > 0$ satisfying t = f(u)f(v) and

$$\min\{A(u), B(v)\} > \sup_{f(s)=t} \sup_{s=jk} \min\{A(j), B(k)\} + \varepsilon.$$

If we take s = uv, then

$$\sup_{s=jk}\min\{A(j),B(k)\}\geq\min\{A(u),B(v)\}>\sup_{f(s)=t}\sup_{s=jk}\min\{A(j),B(k)\}.$$

Therefore,

$$\sup_{f(s)=t}\sup_{s=jk}\min\{A(j),B(k)\}>\sup_{f(s)=t}\sup_{s=jk}\min\{A(j),B(k)\}.$$

It contradicts with the hypothesis. Hence $\theta_f(A \circ B)(t) = (\theta_f(A) \circ \theta_f(B))(t)$. Consequently, $\theta_f(A \circ B) = \theta_f(A) \circ \theta_f(B)$. \square

Theorem 3.3 $S \cong T$ implies $F(S) \cong F(T)$.

Proof Let f be an isomorphic mapping from S onto T. By the proof of Theorem 3.2, θ_f is a homomorphic mapping from F(S) onto F(T). We only show θ_f is injective. If $\theta_f(A) = \theta_f(B)$ for $A, B \in F(S)$, then, for all $t \in T, \theta_f(A)(t) = \theta_f(B)(t)$, this is, $\sup_{f(s)=t} A(s) = \sup_{f(s)=t} B(s)$. Since f is an isomorphic mapping from S to T, there exists uniquely $s \in S$ such that f(s) = t for each $t \in T$. Therefore, A(s) = B(s) for all $s \in S$. So A = B. It shows that θ_f is injective. \square

4. Fundamental theorems of homomorphisms

Lemma 4.1 $F_s(S)$ is a subsemigroup of F(S).

Proof Since F(S) is a semigroup, we only show that $F_s(S)$ is closed with respect to multiplication \circ . To do it, let $A, B \in F_s(S)$. Suppose there exist $x, y \in S$ such that ab = xy and A(x), B(y) > 0 for $a, b \in S$. Then

$$(A \circ B)(ab) = \sup_{ab=xy} \min\{A(x), B(y)\}$$

$$\geq \sup_{ab=xy, x=ij, y=uv} \min\{\min\{A(i), A(j)\}, \min\{B(u), B(v)\}\}$$

$$\geq \sup_{a=ij, b=uv} \min\{\min\{A(i), A(j)\}, \min\{B(u), B(v)\}\}$$

$$\geq \min\{\sup_{a=ij} \min\{A(i), B(j)\}, \sup_{b=uv} \min\{A(u), B(v)\}\}$$

$$= (A \circ B)(a) \land (A \circ B)(b).$$

Therefore, $A \circ B \in F_s(S)$. \square

For $\rho \in \operatorname{Con}_f(S)$ and $A \in F_s(S)$, a fuzzy set $A/\rho \in F_s(S/\rho)$ is defined as follows: for all $\rho_\alpha \in S/\rho$

$$(A/\rho)(\rho_a) = \sup_{\rho(x,a)=1} A(x).$$

We say A/ρ is a fuzzy quotient subsemigroup of S with respective to the fuzzy congruence ρ .

Lemma 4.2 Let $\rho \in \operatorname{Con}_f(S)$, then A/ρ is a fuzzy subsemigroup of S/ρ .

Proof First, it is clear that A/ρ is a mapping from S/ρ to [0,1]. Next, for all $\rho_a, \rho_b \in S/\rho$,

$$(A/
ho)(
ho_a
ho_b) = (A/
ho)(
ho_{ab}) = \sup_{
ho(x,ab)=1} A(x)$$

$$= \sup_{
ho(y,a)=1,
ho(z,b)=1} A(yz) \geq \sup_{
ho(y,a)=1,
ho(z,b)=1} \min\{A(y),A(z)\}$$

$$= \min\{\sup_{
ho(y,a)=1} A(y), \sup_{
ho(z,b)=1} A(z)\} = (A/
ho)(
ho_a) \wedge (A/
ho)(
ho_b).$$

Hence, A/ρ is a fuzzy subsemigroup of S/ρ . \Box

Theorem 4.3 For $\rho \in \operatorname{Con}_f(S)$, there exists a homomorphism θ_ρ from $F_s(S)$ onto $F_s(S/\rho)$ satisfying $\theta_\rho(A) = A/\rho$ for all $A \in F_s(S)$.

Proof For $\rho \in \operatorname{Con}_f(S)$, by Lemma 2.4, we know there exists an isomorphism $g: S/\rho^1 \to S/\rho$ satisfying $g(a\rho^1) = \rho_a$. According to Theorem 5.3 in page 22 of [1], there exists a homomorphism h from S onto S/ρ^1 such that, for all $a \in S$, $h(a) = a\rho^1$. Hence f = gh is a homomorphism from S onto S/ρ such that $f(a) = \rho_a$ for all $a \in S$. Furthermore, let $A \in F_s(S)$. Then, for all $\rho_a \in S/\rho$,

$$\theta_f(A)(\rho_a) = \sup_{f(x)=\rho_a} A(x) = \sup_{\rho_x=\rho_a} A(x)$$

$$= \sup_{\rho(x,a)=1} A(x) \text{ (by Lemma 2.2)}$$

$$= (A/\rho)(\rho_a).$$

Therefore, $\theta_f(A) = A/\rho$ for all $A \in F_s(S)$. To show θ_f is surjective, let $B \in F_s(S/\rho)$. We define a fuzzy subsemigroup A of S given by, for all $s \in S$,

$$A(s) = B(f(s)).$$

Then, for all $\rho_a \in S/\rho$,

$$(A/\rho)(\rho_a) = \sup_{\rho(x,a)=1} A(x) = \sup_{\rho_x=\rho_a} A(x) = \sup_{f(x)=\rho_a} B(f(x)) = B(\rho_a).$$

 $A/\rho = B$ shows that θ_f is surjection satisfying $\theta_f(A) = B$. According to proof of Theorem 3.2, θ_f is a homomorphism. Take $\theta_\rho = \theta_f$, as required. \Box

We called θ_{ρ} a homomorphism induced by ρ from $F_s(S)$ onto $F_s(S/\rho)$.

Corollary 4.4 Let $\rho \in \operatorname{Con}_f(S)$, then $F_s(S/\rho) = \{A/\rho : A \in S\}$.

The next theorem is concerned with a more general situation.

Theorem 4.5 Let f be a homomorphism from S onto T and $\rho \in \operatorname{Con}_f(S)$. If $\rho^1 \subsetneq \ker f(\rho^1 = \ker f)$, where

$$\ker f = \{(a,b) \in S \times S : f(a) = f(b)\}.$$

Then there exists a homomorphism (isomorphism) α from $F_s(S/\rho)$ onto $F_s(T)$ such that $\alpha(A/\rho) = \theta_f(A)$ for all $A/\rho \in F_s(S/\rho)$ and the diagram

commutes.

Proof We define $g: S/\rho \to T, g(\rho_a) = f(a)$ for all $\rho_a \in S/\rho$. If $\rho_a = \rho_b$ for $\rho_a, \rho_b \in S$, by Lemma 2.2, $\rho(a,b) = 1$. Hence $(a,b) \in \ker f$ and so f(a) = f(b). That is to say g is a mapping.

For all $\rho_a, \rho_b \in S/\rho$,

$$g(\rho_a \rho_b) = g(\rho_{ab}) = f(ab) = f(a)f(b) = g(\rho_a)g(\rho_b).$$

Hence g is a homomorphism from S/ρ to T. Furthermore, for all $t \in T$,

$$\theta_g(A/\rho)(t) = \sup_{g(\rho_s)=t} (A/\rho)(\rho_s) = \sup_{f(s)=t} (A/\rho)(\rho_s) = \sup_{f(s)=t} \sup_{\rho(x,s)=1} A(x)$$
$$= \sup_{f(s)=t} A(s) = \theta_f(A)(t).$$

Therefore, $\theta_g(A/\rho) = \theta_f(A)$. If $\rho^1 = \ker f$, then f(a) = f(b) for $a, b \in S$ implies $g(\rho_a) = g(\rho_b)$. That is, θ_g is an isomorphism. Take $\alpha = \theta_g$, as required. \square

Lemma 4.6 Let $\rho \leq \sigma$ for $\rho, \sigma \in \operatorname{Con}_f(S)$. Then the fuzzy relation σ/ρ on S/ρ , defined by, for all $a, b \in S$,

$$(\sigma/\rho)(\rho_a,\rho_b)=\sigma(a,b),$$

is a fuzzy congruence on S/ρ .

Proof Let $\rho \leq \sigma$ for $\rho, \sigma \in \operatorname{Con}_f(S)$. Suppose $\sigma(a,b) \neq \sigma(c,d)$ for $(a,b), (c,d) \in S \times S$. Then $(\rho_a, \rho_b) \neq (\rho_c, \rho_d)$. Otherwise, $\rho_a = \rho_c$ imply $\rho(a,c) = 1$ and $\rho(b,d) = 1$. Since $\rho \leq \sigma, \rho(a,c) \leq \sigma(a,c) = 1$ and $\rho(b,d) \leq \sigma(b,d) = 1$. We deduce $\sigma(a,b) = \sigma(c,d)$. It contradicts with the hypothesis. So σ/ρ is a mapping. Then, for all $\rho_a, \rho_b, \rho_c \in S/\rho$,

(1)
$$(\sigma/\rho)(\rho_a,\rho_a)=\sigma(a,a)=1;$$

(2)
$$(\sigma/\rho)(\rho_a,\rho_b) = \sigma(a,b) = \sigma(b,a) = (\sigma/\rho)(\rho_b,\rho_a);$$

- $(3) \ \ (\sigma/\rho)(\rho_a,\rho_c)=\sigma(a,c)\geq\sigma(a,b)\wedge\sigma(b,c)=(\sigma/\rho)(\rho_a,\rho_b)\wedge(\sigma/\rho)(\rho_b,\rho_c);$
- $(4) \ \ (\sigma/\rho)(\rho_a\rho_c,\rho_b\rho_d) = (\sigma/\rho)(\rho_{ac},\rho_{bc}) = \sigma(ac,bd) \geq \sigma(a,b) \wedge \sigma(c,d) = (\sigma/\rho)(\rho_a,\rho_b) \wedge (\sigma/\rho)(\rho_c,\rho_d).$

It shows that σ/ρ is a fuzzy congruence on S/ρ . \Box

Theorem 4.7 If $\rho \leq \sigma$ for $\rho, \sigma \in \operatorname{Con}_f(S)$, then there exists an isomorphism α from $F_s((S/\rho)/(\sigma/\rho))$ onto $F_s(S/\sigma)$ such that $\alpha((A/\rho)/(\sigma/\rho)) = A/\rho$ and the following diagram commutes.

Proof Since $\rho \leq \sigma$, $\rho^1 \subseteq \sigma^1$. Thus, we can define a mapping f from S/ρ to S/σ given by, for all $\rho_a \in S/\rho$,

$$f(\rho_a) = \sigma_a$$
.

For $\rho_a, \rho_b \in S/\rho$, $f(\rho_a \rho_b) = f(\rho_{ab}) = \sigma_{ab} = \sigma_a \sigma_b = f(\rho_a)f(\rho_b)$. Hence f is a homomorphism. By Lemma 4.6, σ/ρ is a fuzzy congruence S/ρ . Notice

$$\ker f = \{(\rho_a, \rho_b) \in S/\rho \times S/\rho : f(\rho_a) = f(\rho_b)\} = \{(\rho_a, \rho_b) \in S/\rho \times S/\rho : \sigma_a = \sigma_b\}$$
$$= \{(\rho_a, \rho_b) \in S/\rho \times S/\rho : \sigma(a, b) = 1\} = (\sigma/\rho)^1.$$

Since $F_s(S/\rho) = \{A/\rho : A \in F_s(S)\}$, we have

$$F_{\mathfrak{s}}((S/\rho)/(\sigma/\rho)) = \{(A/\rho)/(\sigma/\rho) : A/\rho \in F_{\mathfrak{s}}(S/\rho)\}.$$

By Theorem 4.5, there exists an isomorphism θ_f from $F_s((S/\rho)/(\sigma/\rho))$ to $F_s(S/\sigma)$ such that

$$\theta_f((A/\rho)/(\sigma/\rho)) = A/\sigma.$$

Hence $\alpha = \theta_f$. \square

Definition 4.8 Let f be a homomorphism (isomorphism) from S onto T. If $\theta_f(A) = B$ for $A \in F_s(S)$ and $B \in F_s(S)$. Then we say A is homomorphic (isomorphism) onto B, which is denoted as $A \sim B(A \cong B)$.

The following results is from Theorem 4.5 and 4.7.

Theorem 4.9 Let f be a homomorphism (isomorphism) from S onto T. The following results are true.

- (1) If $\rho^1 \subseteq \ker f(\rho^1 = \ker f)$ for $\rho \in \operatorname{Con}_f(S)$, then $A/\rho \sim \theta_f(A)(A/\rho \cong \theta_f(A))$.
- (2) If $\rho < \sigma$ for $\rho, \sigma \in \operatorname{Con}_f(S)$, then $(A/\rho)/(\sigma/\rho) \cong A/\sigma$.

Remark 4.10 In fact, Theorem 4.9 is a generalization of fundamental theorems of homomorphisms of semigroups in fuzzy subsemigroups.

References:

- [1] HOWIE J M. An Introduction on Semigroup Theory [M]. Academic Press, New York, 1976.
- [2] KUROKI N. Fuzzy congruences and fuzzy normal subgroups [J]. Inform. Sci., 1992, 60: 247-259.
- [3] KUROKI N. Fuzzy congruences on inverse semigroups [J]. Fuzzy Sets and Systems, 1997, 87: 335-340.
- [4] MURALI V. Fuzzy congruence relations [J]. Fuzzy Sets and Systems, 1991, 41: 359-369.
- [5] MO Z W, WANG X P. On pointwise depiction of fuzzy regularity of semigroups [J]. Inform. Sci., 1993, 74: 265-274.
- [6] SHEN J Z. On fuzzy regular subsemigroup of a semigroup [J]. Inform. Sci., 1990, 51: 111-120.

两个模糊子半群集合之间的同态

李勇华1、徐成贤2

(1. 华南师范大学数学系, 广东 广州 510631; 2. 西安交通大学理学院, 陕西 西安 710049)

摘 要: 设 S,T 是半群, F(S) 和 $F_s(S)$ 分别表示 S 的所有模糊子集的集合和所有模糊子半群的集合。文中,讨论了 $F(S)(F_s(S))$ 和 $F(T)(F_s(T))$ 之间的模糊同态,建立了模糊商子半群的概念,把分明半群的基本同态定理推广到模糊子半群。

关键词: 模糊子半群; 模糊商半群; 模糊同余; 同态.