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1. Introduction

Ekeland gave his famous variational principle for lower semicontinuous functions de-
fined on complete metric spaces (where there are no linear structures), which plays very
important role in nonlinear functional analysis (see [1], [2]). By using an E X R version
of a classical maximality result due to Bishop and Phelps, Phelps obtained the follow-
ing Ekeland’s variational principle for lower semicontinuous functions defined on Banach
spaces (see [3, p.47]):

Assume that f is a proper lower semicontinuous function on the Banach space E which
is bounded below. Suppose that € > 0 and that f(z¢) < inf{f(z): z € E} + €. Then for
any A with 0 < A < 1 there exists a point z € dom(f) such that

(i) Allz = 2ol < f(z0) - (2),

(i1) Iz — 2ol < e/,

(iii) Alle — z|| + f(=) > f(z) whenever z # 2.

Here a function f: E — R U {400} is said to be proper if its effective domain, i.e.,
dom(f)={z € E: f(z) < +o0}, is nonempty.

In this paper we shall extend the above result to countable semi-normed spaces and
obtain a new version of Ekeland’s variational principle. Tirst we need to make some prepa-
rations. Let (E,7) be a complete topological vector space whose topology is generated by
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a sequence of semi-norms ||[|; < |||l2 < ||lls € --- (concerning topological vector spaces,
see, for example, [4]). Inspired by [3, Definition 3.11], we define

Kyn={(z,r) € EXR: Alz|l, < —r}.

Then we have the following.

Lemma 1 K, , is a closed convex conein E x Rand Kx3 D Ky D ---.
The proof of Lemma 1 is routine and we omit it. The following Lemma 2 is the key
to our main result.

Lemma 2 Let A be a nonempty closed set in E x R. Suppose that 0 < A < 1 and
inf{r : (z,7) € A} = 0. Then for any (zg,r9) € A and i € N, there exists (z,r) €
AN(Kx;+ (zo,7m0)) such that

{(z,7)} = An ﬁ (Kxn+ (2,1)).

n=1

Proof Without loss of generality, we may assume that ¢ = 1. Put 4; := AN (Ky; +
(z0,70)). Then A; C A and

inf g(A;) > inf g(A) = inf{r: (z,7) € A} =0,
where g: E X R — R is defined as follows:
g(z,7)=r, V(z,r) € EXR.

Choose (z1,7;) € A; such that

N} =

ry < inf g(4;) +
Put As := AN (K2 + (21,71)), then A, C A and
inf g(Az) > inf g(A) = 0.
Choose (z3,72) € A; such that
ry < Inf g(Az) + 2%

In general, put
An = AN (Kyn+ (2n-1,7n-1))

and choose (z,,7,,) € A, such that

1
rn, < inf g(A4,) + o
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Repeating this process, we obtain a sequence (z,,7,)ncn and a sequence (A, )nen such
that

1
(2ny70) € Ap = AN (Kxp + (2n-1,Tn-1)), T <infg(4,) + o VYn € N.
Obviously
(:l!n,’l‘n) €A, C KA,n + (zn—l) rn—l)
and by Lemma 1, K ,41 C K, hence we have
An+1 =AnN K/\ n+1 + (1n,7'n))
C AN K)\n+1 + KAn + (xn 1, Pn— 1))

(
(
CAN(Kan+ Knn+ (20-1,7n-1))
= AN (Kxn+ (Zn-1,7n-1))

= A,.
Form > n+1,
(zmyrm) € Am C An+1 =AnN (K/\,n+1 + (ln,f'n)).
Hence
(zm Ty T — Tn) € KA,n+1y
that is,

/\“zm - xn”n-}—l S Pn — Tm-
Since 7., € g(4,,) C g(A,), we have r,,, > inf g(A,,). And since r,, < inf g(4,,) + 1/2", we
observe that

1 . 1
AHzm - zn“n+l <rp—rm < lnfg(An) + '2°; - lnfg(An) =~ on"

2n
Let ng € N be given. For m > n + 1 > ng, we have:

0<7'n_7'1n<

1
A“:Em - mn”no sy AH"cm :ann+l < 2_,;, = 5;

From this, we know that (2, )necn is a Cauchy sequence in (E, 7)) and (7, )nen is a Cauchy
real number sequence. Since (£,7) and R are complete, there exist z € £ and r € K such
that 2, - z and r,, — 7, as n — 0.

Take arbitrarily n € N, then clearly 4, = AN (Kj, + (2n-1,7n_1)) is closed. For
every m > n, (2,,,7m) € A, C Ap and (2, 70) — (2,7), as m — oo0. Hence (z,7) € A,,.

Thus

(Z,’I’) € ﬂ An = ﬂ (A N (KA,11 + (zn—lyrn—l)))
n=1 n=1

=AnN m (K)\,n + (zn—lv rn-—l))-

n=1
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Particularly (z,7) € A; = AN (K + (20,70)). Next we show below that

()} = 40 () (Ean + (227).

n=1
It is easy to see that

(z,7) € AN ﬂ (Kan + (2,7))-

n=1

On the other hand, if
(z,7) € An ﬂ (Kxn+(2,7)),

n=1

then

(217 7") € K/\,n + (Z, 7') C K/\,n, + A1L+1
C K/\.u + K/\,n+l + (23”,7’”) C K/\,n + KA,n + (znarn)
= K)\,n + (2:1177‘n)-

From this, (2 — z,,,7' — 7,,) € K, that is,
Mz =z, < — 7
Remarking that

(Z’,’I'/) € K/\,n + (Z,’I’) C K/\,n + I()\,n + (rn—lvrn——l)
= KA.n, + (zn—lyrn—l)

and (2',7') € A, we conclude that
2,7y e An(Kxn + (2ne1,70-1)) = Ap.

Therefore 7' > inf g(A,,). Combining this with r,, < inf g(A4,) + 1/2", we have:
Mz =zl <= 7'

1
< infg(4,)+ o~ inf g(A,,)
1
on )
Let ny € N be given. Then for all n > n, we have

1 1
AHZ/ - zn“ug S >\Hzl - zn“n < 57:1 0 S Ty — 7" < '2—1:

From this we see that z,, — 2’ in (E,7) and r,, — 7’ in R. By the uniqueness of limits
we conclude that z/ = z and 7' = 7, i.e, (2/,7') = (z,7). Thus we have proved that

{(z,7)} = AN ﬂ (Kan+(z,7)). O

n=1
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2. Ekeland’s variational principle in countable semi-normed spaces

Now we come to our main result.

Theorem 1 Let (E, T) be a complete topological vector space whose topology is generated
by a sequence of semi-norms [[||1 < [[{l2 < ||| < ---. Assume that f: E — RU {400}
is a proper lower semicontinuous function which is bounded below. Suppose that zgo € E
and € > 0 such that f(zo) < inf{f(z) : ¢ € E} + €. Then for any 0 < XA < 1 and any
i € N, there exists z € dom(f) such that

(1) Allz = =zolli < f(=o) — f(2),

(ii) 1z - zolli < ¢/,

(iii) Alimg||lz — z|l. + f(z) > f(z), Ve # z.
Proof Since f: E — RU {+00} is lower semicontinuous and bounded below, we know
that A := epi(f) = {(=,7) : f(z) < r} is closed in £ x R and inff(E) > —oo. By
the assumption, f(zo) < inff(E) + . Without loss of generality, we may assume that
inff(E) = 0. Thus 0 < f(zy) < €. Since (zy, f(zo)) € A and inf{r : (z,r) € A} =0, by

Lemma 2 we conclude that there exists (z,r) € A such that
(z,r) € AN (K + (20, f(20))) (1)

and

()} = A0 () (Kan + (2,7)). (@)

n=1

From (1), we know that 0 < f(z) <7 and (z — 29,7 — f(2¢)) € K, which means that

Allz = zolli < f(z0) —r < f(zo) — f(2) < f(=0) <e.

Hence M|z — z¢||i < f(zo) — f(2) and ||z — z¢||; < €/A. That is to say, the conclusions

(i) and (ii) in Theorem 1 hold. We need yet to show that (iii) holds. First we show that
r = f(z), where (z,7) satisfies (2). Since (z,7) € A, we always have that f(z) < r. If
f(z) < r, then (z,7) # (z, f(z)). Thus

(= F2) € AN () (Ko + (7).

=1

Remarking that (z, f(z)) € A, we have

(2 FE) & (V(Ean + (7).

n=1

Thus at least there exists n € N such that (z, f(2)) € Kxn+(2,7), 01 (0, f(2)—7) & K.
That is, A0, > r — f(z). This leads that f(z) > r, which contradicts the assumption
that f(z) < r. Therefore we conclude that » = f(z). That is,

(= f)) = A0 () (Ean + (2 £(2))). (3)

n=1
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If z # z and f(z) = 400, certainly the conclusion (iii) holds. Now let us assume that
z # z and f(z) < +00. By (3) we know that

(= F@) € A0 () (Kao + (2 S

Hence there exists n = n(z) € N such that

(2, f(2)) & Kxn+ (2, f(2)).

From this,
(z -z, f(z) ~ f(2)) € Krn

which means that

/\H:l: - Z”n > f(z) - f(z)

Hence

f(@) + Allz = zlln > f(2).

Since the sequence of semi-norms (|| ||,.)nen 1s increasing, we have
f(z) + Az = zllm > f(2), Ym 2n=n(z).

Hence

f(z) + Mimy ||z — 2]l > f(2),

which shows that the conclusion (iii) holds. O
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