Convergence of Nets in Induced I(L)-Topological Spaces with an Application *

WANG Ge-ping, CHEN Li

(Dept. of Math., Xuzhou Normal University, Jiangsu 221009, China)

Abstract: In this paper we give a characteristic property of convergence of nets in induced I(L)-topological spaces and a simplified proof for the N-compactness being an I(L)-"good extension".

Key words: Induced I(L)-ts; convergence of net; eventual α -net; N-compactness.

Classification: AMS(2000) 54D30, 54A40/CLC number: O189.1

Document code: A Article ID: 1000-341X(2004)01-0013-05

1. Basic Definitions

Let X be a non-empty set, L an F-lattice, i.e., a completely distributive lattice with an order-reversing involution $':L\to L$, (L^X,δ) an L-topological space or an L-ts for short, and N the set of all natural numbers. For every $\alpha\in L$, α denotes the fuzzy set taking the constant value α at any $x\in X$. An L-ts (L^X,δ) is called stratified, if for every $\alpha\in L$, $\alpha\in\delta$. The sets of molecules in L and L^X are denoted by M(L) and $M(L^X)$ respectively. For every $\alpha\in M(L)$, $\beta^*(\alpha)$ denotes the greatest minimum sets of α . For every $x\in X$ and $\alpha\in L$, the L-fuzzy point with support x and height α is denoted by x_α . It is clear that $x_\alpha\in M(L^X)$ if and only if $\alpha\in M(L)$. If D is a directed set, then $\{x_{\alpha_n}^n, n\in D\}$ is called a molecular net in (L^X,δ) , where $x^n\in X$ and $\alpha_n\in M(L)$. We say that a molecular net $\{x_{\alpha_n}^n, n\in D\}$ converges to x_α in (L^X,δ) , if for every $P\in\delta'$ with $x_\alpha\notin P$, there exists $m\in D$ such that $x_\alpha^n\notin P$ for any $n\geq m$, where δ' denotes the set of all closed fuzzy sets in (L^X,δ) . For every $a\in L$, denote $a\in L$ as a subbase and denoted by $a\in L$. The relative topology of $a\in L$ on $a\in L$ is denoted by $a\in L$. Hence $a\in L$ is a topological space.

Let I denote the unit interval [0,1]. The L-fuzzy unit interval I(L) is the set of all equivalence class $[\lambda]$, where $\lambda: R \to L$ is monotone decreasing mapping satisfying $\lambda(t) = 1$ for t < 0 and $\lambda(t) = 0$ for t > 1, and $\mu \in [\lambda]$ iff $\lambda(t-) = \mu(t-)$ and $\lambda(t+) = \mu(t+)$ for

Foundation item: Supported by National Natural Science Foundation of China (10371079)

Biography: WANG Ge-ping (1941-), male, Professor.

^{*}Received date: 2001-03-19

all $t \in R$. The natural L-topology on I(L) is generated from the subbase $\{L_t, R_t : t \in I\}$, where $L_t[\lambda] = \lambda(t-)'$ and $R_t[\lambda] = \lambda(t+)$. A partial order on I(L) is naturally defined by $[\lambda] \leq [\mu]$ iff $\lambda(t-) \leq \mu(t-)$. Define $[\lambda] \wedge [\mu] = [\lambda \wedge \mu]$ and $[\lambda] \vee [\mu] = [\lambda \vee \mu]$. Moreover, let $\bar{\lambda} : R \to L$ satisfy $\bar{\lambda}(t) = \lambda(1-t)'$ for all $t \in R$ and define $[\lambda]' = [\bar{\lambda}]$. And then $(I(L), \vee, \wedge, \prime)$ is a completely distributive lattice with an order-reversing involution.

Lemma 1.1([5; Lemma 4.1]) Let $\lambda \in I(L)$, then λ is a molecule in I(L) iff there exists a molecule α in L and $t \in I$ such that $\lambda = \lambda_{\alpha,t}$, where

$$\lambda_{lpha,t}(s+) = \left\{egin{array}{ll} 1, & ext{if} & s < 0, \ lpha, & ext{if} & 0 \leq s < t, \ 0, & ext{if} & t \leq s. \end{array}
ight.$$

Definition 1.1^[5] Let (L^X, δ) be an L-ts. A mapping $\mu : X \to I(L)$ is called I(L)-valued lower semicontinuous if $R_t \mu \in \delta$ for each $t \in I$. The set of all I(L)-valued lower semicontinuous mapping on X, being an I(L)-topology on X, is called an induced I(L)-topology which is denoted by $\omega(\delta)$. $(I(L)^X, \omega(\delta))$ is called an induced I(L)-topological space.

Definition 1.2^{[8],[5]} Let $v \in L^X$. Define the characteristic function of v, denoted by χ_v , satisfying

$$\chi_{\upsilon}(x)(t+) = \left\{ egin{array}{ll} 1, & ext{if} & t < 0, \ arphi(x), & ext{if} & 0 \leq t < 1, \ 0, & ext{if} & t \geq 1 \end{array}
ight.$$

for any $x \in X$. Moreover, for any $t \in I$ define mapping $\hat{t}: X \to I(L)$ by

$$\hat{t}(x)(s+) = \left\{ egin{array}{ll} 1, & ext{if} & s < t, \ 0, & ext{if} & s \geq t \end{array}
ight.$$

for any $x \in X$.

The definition of N-compactness in L-ts can be found in [1,2]. Let $\{x_{\alpha_n}^n, n \in D\}$ be a molecular net in L^X and $\alpha \in M(L)$. If for every $\lambda \in \beta^*(\alpha)$, there exists $m \in D$ such that $\alpha_n \geq \lambda$ for every $n \geq m$, then $\{x_{\alpha_n}^n, n \in D\}$ is called an eventual α -net. It has been proved that A is N-compact set in (L^X, δ) if and only if for every $\alpha \in M(L)$, every eventual α -net in A has a cluster point in A with height α , i.e., there exists a subnet converging to some $x_{\alpha} \in A$.

2. Main results

Lemma 2.1 If the net $\{\lambda_{\alpha_n,t_n}, n \in D\}$ converges to $\lambda_{\alpha,t}$ in $(M(I(L)), \Omega^*_{I(L)})$, then the net $\{\alpha_n, n \in D\}$ converges to α in $(M(L), \Omega^*_L)$ and for any positive real number $\varepsilon(\varepsilon < t)$, there exists an $m \in D$ such that $t_n > t - \varepsilon$ for every $n \ge m$.

Proof Let $s = \sup\{t_n : n \in D\}$, $\beta = \sup\{\alpha_n : n \in D\}$. Suppose that $a \in L$ and $\alpha \in (L-\downarrow a) \cap M(L)$, then we have $\alpha \not\leq a$ and $\lambda_{\alpha,t} \not\leq \lambda_{\alpha,s}$. Since $\{\lambda_{\alpha_n,t_n}, n \in D\}$ converges to $\lambda_{\alpha,t}$ in $(M(I(L)), \Omega^*_{I(L)})$, there exists $m_1 \in D$ such that $\lambda_{\alpha_n,t_n} \not\leq \lambda_{\alpha,s}$ for

every $n \geq m_1$. Since $s = \sup\{t_n : n \in D\} \geq t_n$ for each $n \in D$, we get $\alpha_n \not\leq a$ for $n \geq m_1$. It follows that $\{\alpha_n, n \in D\}$ converges to α in $(M(I(L)), \Omega_L^*)$. If ε is a positive real number $(\varepsilon < t)$, then we have $\lambda_{\alpha,t} \not\leq \lambda_{\beta,t-\varepsilon}$. Since the net $\{\lambda_{\alpha_n,t_n}, n \in D\}$ converges to $\lambda_{\alpha,t}$ in $(M(I(L)), \Omega_{I(L)}^*)$, there exists a $m_2 \in D$ such that $\lambda_{\alpha_n,t_n} \not\leq \lambda_{\beta,t-\varepsilon}$ for any $n \geq m_2$. Since $\beta = \sup\{\alpha_n : n \in D\} \geq \alpha_n$ for any $n \in D$, we get $t_n \geq t - \varepsilon$ for each $n \geq m_2$. This completes the proof.

Theorem 2.1 Suppose that $(I(L)^X, \tau)$ is a stratified I(L)-ts. Let $[\tau] = \{U \in L^X : \chi_U \in \tau\}$ (Obviously, $(L^X, [\tau])$ is a L-ts). If a molecular net $\{x_{\lambda_{\alpha_n,t_n}}^n, n \in D\}$ converges to $x_{\lambda_{\alpha,t}}$ in $(I(L)^X, \tau)$, then the net $\{x_{\alpha_n}^n, n \in D\}$ converges to x_{α} in $(L^X, [\tau])$ and the net $\{\lambda_{\alpha_n,t_n}, n \in D\}$ converges to $\lambda_{\alpha,t}$ in $(M(I(L)), \Omega_{I(L)}^*)$.

Proof Let $x_{\alpha} \not\leq U \in [\tau]'$. Then $\chi_{U'} \in \tau$ and $\chi_{U} \in \tau'$. Note that $x_{\lambda_{\alpha,t}} \not\leq \chi_{U}$. Since $\{x_{\lambda_{\alpha_n,t_n}}^n, n \in D\}$ converges to $x_{\lambda_{\alpha,t}}$, there exists $m \in D$ such that $x_{\lambda_{\alpha_n,t_n}}^n \not\leq \chi_{U}$ for every $n \geq m$. Hence $\alpha_n \not\leq \chi_{U}(x^n)(t_n-) = U(x^n)$, i.e., $x_{\alpha_n}^n \not\leq U$. It follows that $\{x_{\alpha_n}^n, n \in D\}$ converges to x_{α} in $(L^X, [\tau])$.

Suppose that V is a subbase open set in $(M(I(L)), \Omega^*_{I(L)})$ and $\lambda_{\alpha,t} \in V$. Then there exists $\lambda \in I(L)$ such that $V = (I(L) - \downarrow \lambda) \cap M(I(L))$. Since $\lambda_{\alpha,t} \in I(L) - \downarrow \lambda$, we have $\lambda_{\alpha,t} \not\leq \lambda$ and $x_{\lambda_{\alpha,t}} \not\leq \underline{\lambda}$. Note that $(L^X, [\tau])$ is a stratified L-ts, so $\underline{\lambda} \in \tau'$. It follows that there exists $m \in D$ such that if $n \geq m$, then $x^n_{\lambda_{\alpha_n,t_n}} \not\leq \underline{\lambda}$. So we have $\lambda_{\alpha_n,t_n} \not\leq \underline{\lambda}(x_n) = \lambda$, i.e., $\lambda_{\alpha_n,t_n} \in V$. Hence $\{\lambda_{\alpha_n,t_n}, n \in D\}$ converges to $\lambda_{\alpha,t}$ in $(M(I(L)), \Omega^*_{I(L)})$.

The converse of Theorem 2. 1 is not true. it means that if a net $\{x_{\alpha_n}^n, n \in D\}$ converges to x_{α} in $(L^X, [\tau])$ and a net $\{\lambda_{\alpha_n, t_n}, n \in D\}$ converges to $\lambda_{\alpha, t}$ in $(M(I(L)), \Omega^*_{I(L)})$, then the molecular net $\{x_{\lambda_{\alpha_n, t_n}}^n, n \in D\}$ may not converge to $x_{\lambda_{\alpha, t}}$ in $(I(L)^X, \tau)$. We give a counterexample as follows:

Example 2.1 Let $X = \{x, y\}$ be a set with two points, $L = \{0, 1\}$. Then $(L^X, [\tau])$ is an ordinary topological space $(X, [\tau])$, $(I(L)^X, \tau)$ is a fuzzy topological space (I^X, τ) . Define

$$\tau = \{\underline{a} : a \in I\} \cup \{x_{\alpha} \vee y_{\beta} : 0.5 \geq \alpha \geq \beta\}.$$

Then τ is a stratified fuzzy topology on I^X . It is easy to see that $[\tau]$ is a trivial topology on X. Denote a molecular net $\{x_{t_n}^n, n \in \mathbb{N}\}$ in I^X as follows: $t_n = 0.6$ for any $n \in \mathbb{N}$; $x^n = x$ whenever n is odd, $x^n = y$ whenever n is even. It is clear that $\{x^n : n \in \mathbb{N}\}$ converges to x. But $\{x_{t_n}^n, n \in \mathbb{N}\}$ does not converge to $x_{0.6}$ in (I^X, τ) , because $x_{0.6} \notin x_{0.5} \vee y_1 \in \tau'$ and it is false that $\{x^n, n \in \mathbb{N}\}$ is eventually not in $x_{0.5} \vee y_1$.

Theorem 2.2 Suppose that (L^X, δ) is a stratified L-ts, $(I(L)^X, \omega(\delta))$ is the induced I(L)-ts of (L^X, δ) . Then a molecular net $\{x_{\lambda_{\alpha_n, t_n}}^n, n \in D\}$ converges to $x_{\lambda_{\alpha, t}}$ in $(I(L)^X, \omega(\delta))$ iff the net $\{x_{\alpha_n}^n, n \in D\}$ converges to x_{α} in (L^X, δ) and the net $\{\lambda_{\alpha_n, t_n}, n \in D\}$ converges to $\lambda_{\alpha, t}$ in $(M(I(L)), \Omega_{I(L)}^*)$.

Proof By Theorem 2.1, it is sufficient to prove the part of "if".

Suppose that $\{x_{\alpha_n}^n, n \in D\}$ converges to x_{α} in (L^X, δ) and the net $\{\lambda_{\alpha_n, t_n}, n \in D\}$ converges to $\lambda_{\alpha, t}$ in $(M(I(L)), \Omega_{I(L)}^*)$. Since $\omega(\delta)$ has a base $\{\hat{s} \wedge \chi_U : s \in I, U \in \delta\}$, we can suppose that $P = \hat{s} \wedge \chi_U$ and $x_{\lambda_{\alpha, t}} \not\leq P'$. So $\lambda_{\alpha, t} \not\leq P'(x)$ and we get $\alpha \not\leq P'(x)(t-)$.

Hence t>1-s and $\alpha\not\leq U'(x)$. Since the net $\{x_{\alpha_n}^n,n\in D\}$ converges to x_α , there exists $m_1\in D$ such that $x_{\alpha_n}^n\not\leq U'$ for every $n\geq m_1$. By Lemma 2.1, there exists $m_2\in D$ such that $t_n>1-s$ for every $n\geq m_2$. Since D is a directed set, there exists $m\in D$ such that $m\geq m_1$ and $m\geq m_2$. So we have $t_n>1-s$ and $\alpha_n\not\leq U'(x^n)$ for every $n\geq m$. Hence we get $\alpha_n\not\leq U'(x^n)=P'(x^n)(t_n-)$ and $\lambda_{\alpha_n,t_n}\not\leq P'(x^n)$, i.e., $x_{\lambda_{\alpha_n,t_n}}^n\not\leq P'$. It follows that the net $\{x_{\lambda_{\alpha_n,t_n}}^n,n\in D\}$ converges to $x_{\lambda_{\alpha_n,t}}$ in $(I(L)^X,\omega(\delta))$.

Theorem 2.3 Suppose that $(I(L)^X, \tau)$ is a I(L)-ts. If there exists an L-topology δ on L^X such that every molecular net $\{x_{\lambda_{\alpha_n,t_n}}^n, n \in D\}$ converges to $x_{\lambda_{\alpha,t}}$ in $(I(L)^X, \tau)$ iff the net $\{x_{\alpha_n}^n, n \in D\}$ converges to x_{α} in (L^X, δ) and the net $\{\lambda_{\alpha_n,t_n}, n \in D\}$ converges to $\lambda_{\alpha,t}$ in $(M(I(L)), \Omega_{I(L)}^*)$, then $(I(L)^X, \tau)$ is the induced I(L)-ts of (L^X, δ) , that is $\tau = \omega(\delta)$.

Proof Suppose that $\{x_{\lambda_{\alpha_n,t_n}}^n, n \in D\}$ is a molecular net converging to $x_{\lambda_{\alpha,t}}$ in $(I(L)^X, \tau)$. By the assumption of Theorem, $\{x_{\alpha_n}^n, n \in D\}$ converges to x_{α} in (L^X, δ) and the net $\{\lambda_{\alpha_n,t_n}, n \in D\}$ converges to $\lambda_{\alpha,t}$ in $(M(I(L)), \Omega_{I(L)}^*)$. By Theorem 2.2, $\{x_{\lambda_{\alpha_n,t_n}}^n, n \in D\}$ converges to $x_{\lambda_{\alpha,t}}$ in $(I(L)^X, \omega(\delta))$. It follows from Theorem 5.1.17 in [4] that the identify mapping $f: (I(L)^X, \tau) \to (I(L)^X, \omega(\delta))$ is continuous. Hence $\omega(\delta) \subset \tau$. In a similar way, we get the identify mapping $g: (I(L)^X, \omega(\delta)) \to (I(L)^X, \tau)$ is continuous. So $\tau \subset \omega(\delta)$. Finally we get $\omega(\delta) = \tau$.

3. An application

As an application of Theorem 2.3, we will give a simplified proof which shows the N-compactness is an I(L)-"good extension" (see [5; Theorem 4.1]). At first we need the following lemma.

Lemma 3.1 If $\{x_{\lambda_{\alpha_n,t_n}}^n, n \in D\}$ is an eventual $\lambda_{\alpha,t}$ -net in $I(L)^X$, then the net $\{\lambda_{\alpha_n,t_n}, n \in D\}$ converges to $\lambda_{\alpha,t}$ in $(M(I(L)), \Omega_{I(L)}^*)$.

Proof Let $\lambda \in I(L)$ and $\lambda_{\alpha,t} \in (L-\downarrow \lambda) \cap M(I(L)) \in \Omega^*_{I(L)}$. By $\forall \beta^*(\lambda_{\alpha,t}) = \lambda_{\alpha,t}$ and $\lambda_{\alpha,t} \not\leq \lambda$, there exists $\lambda_{\beta,s} \in \beta^*(\lambda_{\alpha,t})$ such that $\lambda_{\beta,s} \not\leq \lambda$. Since $\{x^n_{\lambda_{\alpha_n,t_n}}, n \in D\}$ is an eventual $\lambda_{\alpha,t}$ -net, there exists $m \in D$ such that $\lambda_{\alpha_n,t_n} \geq \lambda_{\beta,s}$ for every $n \geq m$. It follows that $\lambda_{\alpha_n,t_n} \not\leq \lambda$, that is $\lambda_{\alpha_n,t_n} \in (I(L)-\downarrow \lambda) \cap M(I(L))$. Hence $\{\lambda_{\alpha_n,t_n}, n \in D\}$ converges to $\lambda_{\alpha,t}$ in $(M(I(L)),\Omega^*_{I(L)})$.

Theorem 3.1 Let $(I(L)^X, \omega(\delta))$ be the induced I(L)-ts of (L^X, δ) . Then $(I(L)^X, \omega(\delta))$ is N-compact iff (L^X, δ) is N-compact.

Proof Suppose that (L^X, δ) is N-compact, $\{x^n_{\lambda_{\alpha_n,t_n}}, n \in D\}$ is an arbitrary eventual $\lambda_{\alpha,t}$ -net in $I(L)^X$. By Lemma 3.1, $\{\lambda_{\alpha_n,t_n}, n \in D\}$ converges to $\lambda_{\alpha,t}$ in $(M(I(L)), \Omega^*_{I(L)})$. If $\beta \in \beta^*(\alpha)$, then we have $\lambda_{\beta,t} \in \beta^*(\lambda_{\alpha,t})$. So there exists $m \in D$ such that $\lambda_{\alpha_n,t_n} \geq \lambda_{\beta,t}$ for every $n \geq m$. Then we get $\alpha_n \geq \beta$. Hence $\{x^n_{\alpha_n}, n \in D\}$ is a α -net in L^X . Since (L^X, δ) is N-compact, $\{x^n_{\alpha_n}, n \in D\}$ has a subnet, denoted by $\{x^{n_i}_{\alpha_{n_i}}, i \in E\}$, converging to some $x_{\alpha} \in L^X$. By Theorem 2.2, $\{x^n_{\lambda_{\alpha_{n_i},t_{n_i}}}, i \in E\}$ converges to $x_{\lambda_{\alpha,t}}$ in $(I(L)^X, \omega(\delta))$.

Obviously $\{x_{\lambda_{\alpha_{n_i},t_{n_i}}}^{n_i}, i \in E\}$ is a subnet of $\{x_{\lambda_{\alpha_{n_i},t_n}}^n, n \in D\}$. Hence $(I(L)^X, \omega(\delta))$ is N-compact.

Conversely, suppose that $(I(L)^X, \omega(\delta))$ is N-compact and $\{x_{\alpha_n}^n, n \in D\}$ is an arbitrary eventual α -net. Let $t \in I - \{0,1\}$. If $\lambda_{\beta,s} \in \beta^*(\lambda_{\alpha,t})$, then $\beta \in \beta^*(\alpha)$ and $s \leq t$. So there exists $m \in D$ such that $\beta \leq \alpha_n$ for every $n \geq m$. Hence we get $\lambda_{\alpha_n,t} \geq \lambda_{\beta,s}$ for every $n \geq m$. By the arbitrariness of $\lambda_{\beta,s}$, we have that $\{x_{\lambda_{\alpha,t}}^n, n \in D\}$ is a eventual $\lambda_{\alpha,t}$ -net. By the assumption, $\{x_{\lambda_{\alpha_n,t_n}}^n, n \in D\}$ has a subnet, denoted by $\{x_{\lambda_{\alpha_n,t_n},t_n}^{n_i}, t \in E\}$, converging to some $x_{\lambda_{\alpha,t}}$. By Theorem 2.2, $\{x_{\alpha_{n_i}}^{n_i}, i \in E\}$ converges to x_{α} in (L^X, δ) . Obviously $\{x_{\alpha_n}^{n_i}, i \in E\}$ is a subnet of $\{x_{\alpha_n}^n, n \in D\}$. Hence (L^X, δ) is N-compact.

References:

- [1] PENG Yu-wei. N-compactness in L-fuzzy topological spaces [J]. Acta Math. Sinica, 1986, 29: 555-558. (in Chinese)
- [2] ZHAO Dong-sheng. The N-compactness in L-fuzzy topological spaces [J]. J. Math. Anal. Appl., 1987, 128: 64-79.
- [3] WANG Guo-jun. Theory of L-Fuzzy Topological Spaces [M]. Shanxi Normal University Press, 1988. (in Chinese)
- [4] LIU Ying-ming, LUO Mao-kang. Fuzzy Topology [M]. World Scientific, Singapore, 1997.
- [5] WANG Ge-ping. Induced I(L)-fuzzy topological spaces [J]. Fuzzy Sets and Systems, 1991, 43: 69-80.
- [6] CHEN Yi-xiang. On compactness of induced I(L)-fuzzy topological space [J]. Fuzzy Sets and Systems, 1997, 88: 373-378.
- [7] LI Yong-ming. The characterizations of convergence of molecular nets for induced spaces [J]. Journal of Shanxi Normal University, 1991, 19(2): 1-6. (in Chinese)
- [8] KUBIAK T. On fuzzy topologies[D]. Ph. D. Thesis, UAM, Poznan, 1985; Chapter 3:I(L)-fuzzy sets and I(L)-topological spaces.

诱导 I(L)- 拓扑空间中网的收敛性及其应用

王 戈 平, 陈 莉

(徐州师范大学数学系, 江苏 徐州 221009)

摘 要: 本文给出了诱导 I(L)- 拓扑空间中网的收敛性的一个刻画,利用它得到了良紧性 是 I(L)- "好的推广"的一个简洁的证明.

关键词: 诱导 I(L)- 拓扑空间; 网的收敛性; 最终 α - 网; 良紧性.