Journal of Mathematical Research & Exposition Vol.24, No.1, 70-72, February, 2004

More on Convering Squares with Squares *

XU Chang-ging¹. DING Ren²

(1. College of Math., Shandong University, Jinan 250100, China;

2. Dept. of Math., Hebei Normal University, Shijiazhuang 050016, China)

Abstract: This paper improves some lower bounds of a function f(x) introduced in the problem of covering squares with squares.

Key words: covering; squares; sequence of closed squares.

Classification: AMS(2000) 52C15/CLC number: O157.3

Document code: A Article ID: 1000-341X(2004)01-0070-03

In [1], H.L. Abbott and M.Katchalski considered a special covering problem about covering squares with squares. Let $S: s_i = x^i, 0 < x < 1, i = 0, 1, 2, \dots, \{Q_i\}$ is a sequence of closed squares, where Q_i has s_i as its side length. Denote

 $f(x) = \sup\{a : Q \text{ is a square with side length } a \text{ and } Q \text{ can be covered by } \{Q_i\}\}.$

In the covering the sides of Q_i are paralled to those of Q. [1] gives several theorems to evaluate f(x). In this paper, we improve the lower bound of f(x). First we list the related results in [1].

Proposition 1^[1] Let R be a rectangle with sides a and b, $a \leq b$, and S be a collection of n+1 squares with sides $x_0 > x_1 > \cdots > x_n$. If

$$\sum_{i=0}^n x_i^2 \geq ab + (a+b)x_0,$$

then the squares from S may be used to cover R.

Theorem
$$2^{[1]}$$
 $f(x) > \sqrt{\frac{2-x^2}{1-x^2}} - 2 > \sqrt{\frac{1}{1-x^2}} - 2$. We improve Theorem 2 in [1] as follows.

Theorem 1
$$f(x) \ge \sqrt{\frac{2-x^2}{1-x^2}} - 1$$
.

*Received date: 2001-06-28

Foundation item: Supported by NSF of Hebei Province (199174) Biography: XU Chang-qing (1970-), female, Ph.D., Associate Professor. **Proof** Let $a = \sqrt{\frac{2-x^2}{1-x^2}} - 1$. Then

$$\sum_{i=0}^{\infty} x^{2i} = a^2 + 2a.$$

For any $\varepsilon > 0$, there exists a smallest integer $N(\varepsilon)$ satisfying

$$\sum_{i=0}^{N(\varepsilon)} x^{2i} \geq (a-\varepsilon)^2 + 2(a-\varepsilon).$$

From Proposition 1, we get that the square Q with side of length $a-\varepsilon$ can be covered by the square sequence $Q_0, Q_1, \dots, Q_{N(\varepsilon)}$, where Q_i has side of length x^i . From the definition of f(x) and the arbitrariness of ε , we have $f(x) \geq a$, that is

$$f(x) \geq \sqrt{\frac{2-x^2}{1-x^2}} - 1.$$

We give a theorem which improves Proposition 1.

Theorem 2 Let Q be a rectangle with sides of length a and $b, a \leq b, x_0 > x_1 > \cdots > x_n > 0$. If

$$\sum_{i=0}^n x_i^2 \ge ab + bx_0,$$

then the sequence of squares $\{Q_i\}(Q_i \text{ has side of length } x_i, i=0,1,\cdots,n)$ can cover Q.

Proof We prove by induction on n. When n = 0, $\sum_{i=0}^{n} x_i^2 \ge ab + bx_0$, that is $x_0^2 \ge ab + bx_0$, so $x_0(x_0 - b) \ge ab$, then $x_0 > b$, the proposition obviously holds.

Suppose that the proposition holds when the number of squares in the sequence $\{Q_i\}$ is less than n+1. We now consider the sequence with n+1 squares. When $x_0 \geq b$, clearly the result holds. When $x_0 < b$, let $l = \min\{k : \sum_{i=0}^k x_i \geq a\}$. Since

$$\sum_{i=0}^n x_i^2 \ge ab + bx_0,$$

we have

$$ax_0 < ab + bx_0 \le \sum_{i=0}^n x_i^2 < x_0 \sum_{i=0}^n x_i.$$

So $\sum_{i=0}^{n} x_{i} \geq a$. This proves the existence of l. And we can prove that $l \neq n$. If l = n, then $\sum_{i=0}^{n-1} x_{i} < a$, so $\sum_{i=0}^{n-1} x_{i}^{2} \leq x_{0} \sum_{i=0}^{n-1} x_{i} < ax_{0}$, then $\sum_{i=0}^{n} x_{i}^{2} < ax_{0} + x_{n}^{2} < 2ax_{0}$. While $\sum_{i=0}^{n} x_{i}^{2} \geq ab + bx_{0} > b \sum_{i=0}^{n-1} x_{i} + bx_{0} > bx_{0} + bx_{0} \geq 2ax_{0}$, a contraction.

Now dissect Q into two rectangles: R_1 with sides of lengths a and x_l , and R_2 with sides of lengths a and $b - x_l$.

Clearly, from $\sum_{i=0}^{l} x_i \geq a$, we know that R_1 can be covered by Q_0, Q_1, \dots, Q_l . Next we prove that R_2 can be covered by $Q_{l+1}, Q_{l+2}, \dots, Q_n$. Since

$$\sum_{i=0}^n x^2 \ge ab + bx_0,$$

we know

$$egin{aligned} \sum_{i=l+1}^n x_i^2 & \geq ab + bx_0 - \sum_{i=0}^l x_i^2 \geq ab + bx_0 - x_0 \sum_{i=0}^{l-1} x_i - x_l^2 \ & \geq ab + bx_0 - ax_0 - x_l^2 \geq ab + (b-a)x_l - x_l^2 > a(b-x_l) + (b-x_l)x_{l+1}. \end{aligned}$$

That is

$$\sum_{i=l+1}^{n} x_i^2 \geq a(b-x_l) + (b-x_l)x_{l+1}.$$

By the induction hypothesis, R_2 can be covered by Q_{l+1}, \dots, Q_n . Therefore Q can be covered by Q_0, \dots, Q_n , and the conclusion is reached.

Let

$$a=\sqrt{\frac{1}{4}+\frac{1}{1-x^2}}-\frac{1}{2}.$$

Then

$$\frac{1}{1-x^2} = \sum_{i=0}^{\infty} x^{2i} = a^2 + a.$$

Similar to the proof of Theorem 1, we have

Theorem 3
$$f(x) \ge \sqrt{\frac{1}{4} + \frac{1}{1-x^2}} - \frac{1}{2}$$
.

References:

- [1] ABBOTT H L, KATCHALSKI M. Covering squares with squares [J]. Discrete Comput. Geom., 2000, 24: 151-169.
- [2] PACK J, AGARWAL P K. Combinatorial Geometry [M]. J. Wiley and Sons, New York, 1995.

关于正方形序列覆盖正方形的注记

徐常青1,丁仁2

(1. 山东大学数学学院, 山东 济南 250100; 2. 河北师范大学数信学院, 河北 石家庄 050016)

摘 要:本文研究正方形序列覆盖正方形问题中涉及的一个函数的下界问题,设 $\{Q_i\}$ 为闭正方形序列,

$$f(x) = \sup\{a: Q$$
 为正方形, 其边长为 $a, \{Q_i\}$ 覆盖 $Q\}$,

本文给出了 f(x) 的若干下界.

关键词: 覆盖;正方形;闭正方形序列.