Generalized Frames and Frame Operators *

YAO Xi-yan^{1,2}, DU Hong-ke¹

- (1. College of Math. & Info. Sci., Shaanxi Normal University, Xi'an 710062, China;
- 2. Dept. of Math., Yuncheng University, Shanxi 044000, China)

Abstract: In this paper, we introduce and study the generalized frame in a separable Hilbert space H. Using operator-theoretic-methods, we give some conditions for a generalized frame to be a tight frame, a dual frame, or an independent frame in H. We also prove some results concerning generalized frame operators.

Key words: Hilbert space; generalized frame; frame operator.

Classification: AMS(2000) 47N99, 47N40, 46N99/CLC number: O177.1

Document code: A Article ID: 1000-341X(2004)02-0203-06

1. Introduction

In [1], G. Kaiser studied many properties of generalized frames and introduced a series of useful results. In [2], Cao Huai-xin studied some properties and results of discrete frames. In the paper, we study the generalized frame in a separable Hilbert space H and give some conditions for a generalized frame to be a tight frame, a dual frame or an independent frame in H. Associating a generalized frame operator $S = T_h^* T_h(T_h : H \to L^2(\mu))$ for a generalized frame h in H, we get a closed relationship between generalized frames and their operators, and give a general method to construct a new frame from a given generalized frame and operator in B(H).

Let H be a separable Hilbert space and (M, S, μ) be a measure space. A generalized frame [1] in H indexed M is a family of vectors $h = \{h_m \in H : m \in M\}$. For every $f \in H$, if the function $\tilde{f}: M \to \mathbf{C}$ defined by $\tilde{f}(m) = \langle f, h_m \rangle$ is measurable, and there is a pair of constants $0 < A_h \le B_h < \infty$ such that

$$A_h ||f||_H^2 \le ||\tilde{f}||_{L^2(\mu)} \le B_h ||f||_H^2, \quad \forall f \in H, \tag{1.1}$$

the vectors $\{h_m\}_{m\in M}\subseteq H$ are called frame vectors, (1.1) is called the frame condition, and A_h and B_h are called frame bounds. The function \tilde{f} is called the transform of f with

Foundation item: Supported by National Natural Science Foundation of China (19971056)

Biography: YAO Xi-yan (1963-), female, Ph.D., Associate Professor.

^{*}Received date: 2002-01-16

respect to the frame, the map $T_h f = \tilde{f} \ \forall f \in H$ is called the analyzing operator, and the adjoint $T_h^* : L^2(\mu) \to H$ of T_h is given by

$$(T_h^*g)(m)=\int_M g(m)h_m\mathrm{d}\mu(m),\; orall g\in L^2(\mu).$$

$$\tag{1.2}$$

Here the formula (1.2) holds in the "weak" sense in H, and T_h is clearly linear and bounded. If M is at most countable and μ is the counting measure, $h = \{h_m \in H : m \in M\}$ is called a discrete frame [3].

Let $\{h_m\}_{m\in M}$ be a generalized frame in H. If the frame bounds A_h and B_h are equal to each other, then the frame is called tight generalized frame. In this case, the frame condition reduces to $A_h ||f||_H^2 = ||\tilde{f}||_{L^2(\mu)}^2$. If $\{h_m\}_{m\in M}$ and $\{k_m\}_{m\in M}$ are two generalized frames in H and

$$f = \int_{M} \langle f, h_{m} \rangle k_{m} d\mu(m) = \int_{M} \langle f, k_{m} \rangle h_{m} d\mu(m), \quad \forall f \in H,$$
 (1.3)

then we call k a dual generalized frame of h. In this case, h is also a dual generalized frame of k, and the pair $\{h,k\}$ is called a dual pair of generalized frames. A frame $\{h_m\}_{m\in M}$ in H is an independent generalized frame in H, if for $g\in L^2(\mu)$ satisfying $\int_M g(m)h_m d\mu(m) = 0$, $\forall f\in H$, we have g=0 a.e. on M.

2. Some properties of generalized frames

For convenience, we use the notation F_H , F_H^t , F_H^i to denote the sets of all generalized frame, tight generalized frame, independent generalized frame in H, respectively.

Proposition 2.1 Let $h, k \in F_H$, and $[A_h, ||T_h||^2] \cap [A_k, ||T_k||^2] = \emptyset$. Then $h \pm k \in F_H$.

Proof Without loss of generality, we suppose that $||T_k||^2 < A_h$. It suffices to prove that there two positive constants L and N such that

$$|L||f||_H^2 \le ||T_{h\pm k}f||_{L^2(\mu)}^2 \le N||f||_H^2, \ \forall f \in H.$$

Since $T_{h\pm k}$ is bounded, the constant N does exist. Put $L=A_h^{1/2}-\|T_k\|$, then L>0, and we have

$$||T_{h\pm k}f|| \ge ||T_h|| - ||T_k|| \ge A_h^{1/2}||f|| - ||T_k|| \cdot ||f|| = L||f||.$$

Proposition 2.2 Let $h, k \in F_H$. Then the pair $\{h, k\}$ is a dual pair of frames if and only if $T_h^*T_k = I$.

Proof The necessity is clear. We only need to prove the sufficiency. So, we assume that $h, k \in F_H$, and $T_h^*T_k = I$. We get

$$f = T_h^* T_k f = T_h^* \langle f, k_m \rangle = \int_M \langle f, k_m \rangle h_m \mathrm{d}\mu(m), \quad \forall f \in H. \tag{2.1}$$

On the other hand, the condition $T_h^*T_k = I$ implies that $T_k^*T_h = I$, and hence

$$f = T_k^* T_h f = T_k^* \langle f, h_m \rangle = \int_M \langle f, h_m \rangle k_m \mathrm{d}\mu(m), \quad \forall f \in H.$$
 (2.2)

Combining (2.1) with (2.2) implies (1.3). This proves the sufficiency.

Proposition 2.3 Let $h = \{h_m\}_{m \in M} \subseteq H$. Then

- (1) $h \in F_H \Leftrightarrow T_h$ is bounded below $\Leftrightarrow T_h^*T_h$ is invertible;
- (2) $h \in F_H^t \Leftrightarrow T_h$ is a scaled isometric, i.e., $T_h = \alpha U$ for a nonzero scalar α and some isometric U;
 - (3) $h \in F_H^i \Leftrightarrow T_h$ is invertible, i.e., $T_h^{-1} \in B(L^2(\mu), H)$.

Proof Using the formula (1.1) and the definition of tight generalized frames, the assertion (1) and (2) are clear. We only need to prove the assertion (3).

Necessarity. Let $h \in F_H^i$. Then it is clear that T_h is bounded below by the assertion (1). And from the definition of independent generalized frames, we see that $T_h^* \tilde{f} = 0$ implies $\tilde{f} = 0$, i.e., $\text{Ker} T_h^* = \{0\}$, thus T_h is sujective. This shows that T_h is invertible.

Sufficiency. Let T_h be invertible. We have that

$$||f|| = ||T_h^{-1}T_hf|| \le ||T_h^{-1}|| \cdot ||T_hf||,$$

so $||T_h f|| \ge ||T_h^{-1}||^{-1}||f||, \forall f \in H$, i.e., T_h is bounded below. By the assertion (1) we get $h \in F_H$. Now suppose that there exists a nonzero function $g \in L^2(\mu)$ such that

$$\int_{M}g(m)h_{m}\mathrm{d}\mu(m)=0,\ \forall f\in H,$$

then there is a nonzero function $g \in L^2(\mu)$ such that $T_h^*g = 0$, i.e., $\operatorname{Ker} T_h^* \neq \{0\}$, which is a contradiction to the fact that T_h is invertible. Hence, $h \in F_H^i$.

3. Main results

For a given generalized frame $h = \{h_m\}_{m \in M}$, composing T_h with the adjoint operator T_h^* , we get the frame operator $S: H \to H$

$$Sf = T_h^* T_h f = \int_M \langle f, h_m \rangle h_m \, \mathrm{d}\mu(m), \ \forall f \in H.$$
 (3.1)

Clearly, S is a linear operator on H. If $h = \{h_m\}_{m \in M}$ is a generalized frame with the frame bounds A_h and B_h , then

$$|A_h||f||_H^2 \le \langle Sf, f \rangle \le |B_h||f||_H^2, \quad \forall f \in H.$$
 (3.2)

From the formula (3.1), we have

$$f = \int_{M} \langle f, h_m \rangle S^{-1} h_m d\mu(m), \ \forall f \in H,$$
 (3.3)

and

$$S^{-1}f = \int_{M} \langle f, S^{-1}h_{m} \rangle S^{-1}h_{m} d\mu(m), \ \forall f \in H.$$
 (3.4)

Applying the operator S^{-1} to the vectors $\{h_m\}_{m\in M}$ leads to a new family of vectors $\{S^{-1}h_m\}_{m\in M}$. Hence, we obtain the following property.

Proposition 3.1 Let $h = \{h_m\}_{m \in M}$ be a family of vectors in H and the function $\langle f, h_m \rangle, m \in M$ be measurable. Define an operator S by

$$Sf = \int_{M} \langle f, h_m \rangle h_m \mathrm{d}\mu(m), orall f \in H.$$

Then the family of vectors $h = \{h_m\}_{m \in M}$ is a generalized frames of H if and only if S is a positive invertible operator in B(H).

Proof Using the formula (3.2), the necessarity is clear. We only need to prove the sufficiency. Conversely, if the operator S is a positive invertible operator, then for all $f \in H$, we have

$$\triangle(S)||f||^2 \le \langle Sf, f \rangle \le ||S|| \cdot ||f||^2.$$

Hence, the family of vectors $h = \{h_m\}_{m \in M}$ is a generalized frames with the frame constants $\triangle(S)$ and ||S||. Here $\triangle(S) = \inf\{||Sf|| : f \in H, ||f|| = 1\}$ denotes the minimal module of

Suppose that a generalized frame is tight. We have

$$\langle Sf, f \rangle = \lambda ||f||^2 \text{ for all } f \in H,$$

where λ is a scalar. So, in this case, $S = \lambda I$. Furthermore, we get the following assertion.

Theorem 3.2 Let $\{h_m\}_{m\in M}$ be a generalized frame with the frame operator S. Then the following assertions are equivalent.

- (1) S = I;
- (2) $||f||^2 = \int_M |\langle f, h_m \rangle|^2 d\mu(m), \ \forall f \in H;$ (3) $||f||^2 = \int_M |\langle f, S^{-1} h_m \rangle|^2 d\mu(m), \ \forall f \in H.$

Proof Using the formula (3.1), $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$ are evident.

(2) \Rightarrow (1) If S is the frame operator of $\{h_m\}_{m\in M}$, for all $f\in H$, by the formula (3.4) we see that

$$\langle S^{-1}f,f\rangle = \int_M |\langle f,S^{-1}h_m\rangle|^2 \mathrm{d}\mu(m) = ||S^{-1}f||^2 = \langle S^{-2}f,f\rangle.$$

Thus, $S^{-1} = S^{-2}$. This implies S = I.

 $(3) \Rightarrow (1)$ The proof is similar to the proof of $(2) \Rightarrow (1)$. Using the formula (3.1), we see that

$$\langle Sf, f \rangle = \int_{M} |\langle f, h_{m} \rangle|^{2} d\mu(m) = \int_{M} |\langle Sf, S^{-1}h_{m} \rangle|^{2} d\mu(m)$$
$$= ||Sf||^{2} = \langle S^{2}f, f \rangle.$$

So, $S = S^2$. This implies S = I.

Next, we will show a general method to get a new generalized frame from a given generalized frame and operator in B(H).

Theorem 3.3 Let $\{h_m\}_{m\in M}\in F_H$ and $V\in B(H)$. Set $k=\{Vh_m\}_{m\in M}$. Then $k\in F_H$

if and only if the adjont operator V^* of V is bounded below, i.e., there exists a positive constant δ such that

$$||V^*f|| \ge \delta ||f||, \ \forall f \in H. \tag{3.5}$$

Proof Using the formula (3.5), we have

$$||V^*f||^2 \ge \delta^2 ||f||^2, \ \forall f \in H. \tag{3.6}$$

By the formula (1.1) with the frame bound A_h and the formula (3.6), we obtain

$$\delta^2 A_h \|f\|^2 \le A_h \|V^* f\|^2 \le \int_M |\langle V^* f, h_m \rangle|^2 \mathrm{d}\mu(m)$$

$$= \int_M |\langle f, V h_m \rangle|^2 \mathrm{d}\mu(m), \ \forall f \in H,$$

A similar estimate with the frame bound B_h yields

$$\int_M |\langle f, V h_m \rangle|^2 \mathrm{d}\mu(m) = \int_M |\langle V^* f, h_m \rangle|^2 \mathrm{d}\mu(m) \leq B_h ||V^*||^2 \cdot ||f||^2, \ \forall f \in H.$$

It is clear that

$$\langle f, Vh_m \rangle \in L^2(\mu)$$
, for all $f \in H$.

Hence, we complete the sufficiency part of the proof.

Necessarity. We assume that $k = \{Vh_m\}_{m \in M} \in F_H$ with frame bounds $0 < C_k \le D_k < \infty$ so that

$$C_k ||f||^2 \le \int_M |\langle f, Vh_m \rangle|^2 \mathrm{d}\mu(m) \le D_k ||f||^2, \ \forall f \in H.$$
(3.7)

Using the upper frame bound B_h of $\{h_m\}_{m\in M}$ and the left inequality of (3.7), we obtain

$$C_k \|f\|^2 \leq \int_M |\langle f, V h_m \rangle|^2 \mathrm{d}\mu(m) = \int_M |\langle V^* f, h_m \rangle|^2 \mathrm{d}\mu(m) \leq B_h \|V^* f\|^2, \forall f \in H,$$

where $\delta^2 = \frac{C_k}{R_k}$. This completes the proof.

Corollary 3.4 Let $\{h_m\}_{m\in M}$ be a generalized frame with the frame operator S. Then the family of vectors $h' = \{S^{-\frac{1}{2}}h_m\}_{m\in M}$ is a tight frame with the frame bounds 1 and 1.

Proof By the Theorem 3.3, we see that $\{S^{-\frac{1}{2}}h_m\}_{m\in M}\in F_H$. So, we only need to prove $\{S^{-\frac{1}{2}}h_m\}_{m\in M}\in F_H^t$. Set $T_{h'}f=\langle f,S^{-\frac{1}{2}}h_m\rangle, \forall f\in H$. Clearly, $T_{h'}f\in L^2(\mu)$. From the formula (3.3), we have

$$\langle f, f \rangle = \int_M |\langle f, S^{-\frac{1}{2}} h_m \rangle|^2 \mathrm{d}\mu(m) = ||T_{h'} f||^2, \ \forall f \in H.$$

This implies

$$||T_{h'}f||=||f||, \forall f\in H,$$

i.e., $T_{h'}$ is an isometric, by Proposition 2.3, $\{S^{-\frac{1}{2}}h_m\}_{m\in M}\in F_H^t$. In addition, it is clear that the tight frame bounds are 1 and 1.

Corollary 3.5 Let H_1 be a subspace of H, P an orthogonal projection from H onto H_1 , and $\{h_m\}_{m\in M}$ a generalized frame of H. Then $\{Ph_m\}_{m\in M}$ is a generalized frame of H_1 .

References:

- [1] KAISER G. A Friendly Guide to Wavelets [M]. Birkhäuser, MA, 1994.
- [2] CAO Huai-xin. Bessel sequences on a Hilbert space [J]. Chinese J. Engin. Math., 2000, 17: 92-98.
- [3] CHUI C K. An Introduction to Wavelets [M]. Boston, Academic Press, 1992.
- [4] HEI C, WALNUT D. Continuous and discrete wavelet transforms [J]. SIAM Rev., 1989, 31: 628-666.
- [5] CONWAY J B. A Course in Functional Analysis [M]. New York, Springer-Verlag, 1995.

广义框架和框架算子

姚喜妍1,2, 杜鸿科1

(1. 陕西师范大学数学与信息科学学院, 陕西 西安 710062; 2. 运城学院数学系, 山西 运城 044000)

摘 要: 本文研究了可分的 Hilbert 空间 H 中的广义框架,应用算子论方法给出了广义框架是 H 中紧广义框架,对偶广义框架,独立广义框架的充要条件:证明了有关广义框架算子的一些结果.

关键词: Hilbert 空间;广义框架;框架算子.