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Generalization of Ore’s Theorem *
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Abstract: Let G be a graph. The partially square graph G* of G is a graph obtained
from G by adding edges uv satisfying the conditions uv ¢ E(G), and there is some
w € N(u)NN(v), such that N(w) C N(u)UN(v)U {u,v}. In this paper, we will use the
technique of the vertex insertion on l-connected (I = k or k+ 1,k > 2) graphs to provide
a unified proof for G to be hamiltonian, 1-hamiltonian or hamiltonian-connected. The

k
sufficient conditions are expressed by the inequality concerning }° |N(Y;)| and n(Y) in G
i=1

1=
for each independent set Y = {y1,y2,---,yx} in G*, where Y = {vi,¥i_1, -+, vi—p-1)} C
Y for i € {1,2,---,k} (the subscriptions of y;’s will be taken modulo k), b (0 < b < k)
is an integer,and n(Y) = |{v € V(G) : dist(v,Y) < 2}.
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1. Introduction

In this paper, the terminology and notation not defined will follow [2], and we consider
simple finite graphs only. G will always stand for a graph.
Let ¢ > 1 be an integer. Denote

I;(G) = {Y :Y is an independent set of G,|Y| = t}.

Let G be connected, Y C V(G), and v € V(G). Denote dist(v,Y) = min, ¢y {dist(v,
y)} (where dist(v,y) stands for the distance between v and y),

Ni(Y) = {v e V(G): dist(v,Y) =14} (i=0,1,2,--+), and

n(Y) = [No(Y) U N1 (Y) U No(Y)| = |{v € V(G) : dist(v,Y) < 2}.
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For each i € {0,1,2,---,|Y|}, denote
Si(Y)={veV(G): INw)nY]|=i}.

Clearly, N(Y) = Ny(Y) = U} Si(Y), and n(Y) = [V(G) \ U o (MY )| < IV(G)]-
For v € V(G), denote N[v] = N(v)U {v}. Let {u,v} C V(G). Set

J(u,v) = {w € N(u)n N(v) : N(w) € N[uJU N[v]}.

The partially square graph G*[ of G is a graph satisfying V(G*) = V(G) and E(G*) =
E(G)u{uv : uv ¢ E(G), and J(u,v) # 0}.

In this paper, we will prove the following new results (Theorems 1-3) by using the
vertex inserting lemmas introduced in [3]. In Theorems 1-3, we always assume that
Y = {y1,¥2, ¥} € Ix(G), b is a given integer, 0 < b < k,

Yi = {vi¥i-1, Yimp-1)} € Y
for i € {1,2, -+, k} (where the subscriptions of y;’s will be taken modulo k).

Theorem 1 Let G be a k—connected graph with k > 2; b an integer (0 < b < k). If

k
S > T ) - 1)

=1
in G for each Y € I;(G*), then G is hamiltonian. O

Theorem 2 Let G be a (k + 1)—connected graph with k > 2; b an integer (0 < b < k). If

b—1+k
—_—T11

()

k
S IN(I >

in G for each Y € It(G*), then G is l-hamiltonian (if G — w is hamiltonian for any
w e V(G)). O

Theorem 3 Let G be a (k + 1)-connected graph with k > 3; b an integer (0 < b < k). If

Y > L )

in G for each Y € I},(G™), then G is hamiltonian-connected. O

Clearly, Theorem 1 improves and generalizes Ore’s Theorem!4.

We will use, in additional, the following notations.

Sometimes, by a slight abuse of notation, we shall use the same letter for a subgraph
(of G) and its vertex set, provided no ambiguity arises.

Let U and R be subgraphs of G (or subsets of V(G)), denote Ng(U) = N(U)n R.

Each cycle or path of G discussed in this paper will be assigned an orientation. Let
B be a cycle or path of G, {z,y} C V(B), denote by B|z,y| the oriented (z,y)-path of B
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(where the orientation was taken from B), B(z,y] = Blz,y] - {z}, B[z,y) = Blz,y]-{v},
and B(z,y) = Blz,y] - {z,y}.

2. The vertex inserting lemmas and other lemmas

In this section, we always assume that G is a connected non-hamiltonian graph and C
is a maximal cycle of G (i.e., there is no cycle C’ in G such that V(C) C V(C')), and H
is a component of G — V(C). Assume also {v1,v2,-+-,9m} C Ng(H) and v1,v2, -, 0m
occur on C in the order of their indices. The subscriptions of v;’s will be taken modulo
m. If z € V(C), denote by z* and =~ the successor and the predecessor of z along the
orientation of C, respectively.

Foreachi € {1,2,---,m}, a vertex u € C(v;,vi41) is called insertible [3), if there is some
vertex w € C[vi41,v;) such that {w,w*} C N(u). Otherwise u is called non-insertible.

Lemma 1P Let u € C(v;,vi41) for some i € {1,2, - -+, m}. If all the vertices in C(v;,u)
are insertible, then u ¢ N¢(H). Therefore there exists a vertex in C(v;,v;y1), which is
non-insertible. O

By Lemma 1, for each ¢ € {1,2,---,m}, let z; be the first non-insertible vertex in
C(vi,vig1).

Let X, = {z1,22, ", Zm }, XM = X U {20} (where zg is an arbitrary vertex of H).
Set

X ={2p,2p 2} € X

where 1 < p; < ps < -++ < pr, < m. For convenience, we always assume that z,, = z; and
v, = v for t € {1,2, ---, k}. Thus X = {z},2}, ---, z;.}. Denote Jx = UL, Clet, vl
Kx =V(G)\ Jx.
Lemma 2B Xps € I,41(G), X € I(G), Kx C So(X) U 51(X), and Kx N No(X) = 0.
a

Lemma 31 Xy € I,,41(G*), and therefore X € I;(G*). O
A segment Clz1,22)(C Clz, vy 1)t € {1,2, -+, k}) is called a C X -segment, if
(i) C(z1,22) N Su(X) =0, and ,
(i) 2z € No(X)U X, 2 € So(X) U {v,},}.
A CX-segment C[zy, 2;) is said to be simple if C(21,22) C 51(X).

Lemma 48 Let Clz1,2:)(C Clz}, viy)t € {1,2, -+, k}) be a CX-segment. Set L; =
N(z)NnC(z1, z2) (i € {1,2,---,k}). Then

Ltth—la” 'leaLk)Lk—la""Lt+1

(some of them may be empty) form consecutive subpaths of C(z1, z2) which can have only
their endvertices in common, and |L;| < 1 fori € {1,2,---,k}\ {¢t}. O
We always assume that b is an integer(0 < b < k);

Xi={ah,ziq, 2oy HE X)

(for i € {1,2, -+, k}, and the subscriptions of }’s will be taken modulo k).
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Let U C V(G). We always set

k
op(U,X) =Y IN(X:)nUJ;
=1
k
o(X) = oy (V(G), X) = ) IN(X:)l.
i=1

Lemma § (1) Ifw € $3(X) N N(z}), then ap({w}, X) =b=1b-1+ [{q}].
(2) Let

w € 5, (X)NClay, v ] N N(zg, )N N(zg, )N ---N N(z;io)(io > 2),

where
(2o > @ > > a2 1)k 240 > > g (2t 1)

Then
op({w}, X) <min{k,b - 14 [{q1,01 — L, &1 — 2, ", ¢y }},

where the q1,¢1 — 1,¢1 — 2, -+, ¢, are taken modulo k.

Proof (1) If w € S;(X) N N(z;), then w ¢ N(z}) for any ¢ € {1,2,---,k} \ {¢}. Thus
wE ﬂ?:éb-l) N(X;) (where the subscriptions of X;’s will be taken modulo k), and

g+(b-1) g+{b-1)
Al X) = XN fuli= X 1=t

Therefore (1) holds.
(2) Clearly, oy({w}, X) = T, IN(X;) N {w}| < k.
It is easy to see that

ip min{q;_;—1,g;+(b—1)}

w € L_J N N(X;),

i=gq;
where go = ¢1 + b, the subscriptions of X;’s will be taken modulo k. Thus it is not difficult
to see that (2) holds. O

Lemma 6 (1) o(Kx,X) = b(1Kx) = | Upa(30X) 0 Ko
(2) Let Clz1,2)(C Clz},vp,,],t € {1,2,---,k}) be a CX-segment. Then

b—1+k

2 ‘0[21,22“.

0(Clz1,22), X) <

And
o(Clz1,22), X) = b(|C[z1, 22)| - 1)

when C|zy, z,) is simple.
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Proof Note that 0 < b < k, and that b,k are integers, we have b < b—"lz-ﬂi.
(1) By Lemma 2, Kx C So(X)U 51(X), and Kx N No(X) = 0. Thus by Lemma 5(1),
we have

a(Kx,X) = b(|Kx| - [ {JMN(X) n Kx)l)
I>2

so the (1) holds.
(2) By Lemma 4, we may assume C(z,2z,¥) = N(z}) N Cz1,2), and C(z,2}) C
S1(X). Let W' = C(z1,2), [W'| = &';

W = Clz, 22) = {w1, w2, -, wp},

(w1,ws,---,wp occur on C in the order of their indices), and w; € Si(X); by = W N
51(X)|, and hy = h — hy ([C[21,22)| = K" + A+ 1 = A’ + hy + hy + 1). Thus there exist
1 2 9. 9

Notice that C[zy,2;) is a simple C X-segment if and only if h, = 0. Thus if C|[z, z;)
is a simple C X-segment, then by Lemma 5(1),

01,(0[21,22), X) = b(h’ + hl) = blC(Zl,Zz)' = b(lC[Zl,Zz)l - 1)

Therefore we may assume that C[z1, z2) is not a simple CX-segment, so k # 0.
By Lemma 4,

(t 2)qgl) > qgl) S s qgll) > ‘Az) > qéz) S>> ngz) > .
> gl > g > > qu,"(z 1,k Z)fo,'ll > > qu,') >
N A U ST qff)(2t+1).
Thus by Lemma 5, it is not difficult to see that
oy (Clz1, 22), X) = (W U W', X)

g(h(b—1)+k)+bh’=bh’+(h+1)(b—1+-li——h—(_—1;—€—2)
sbh’+(h+1)(b—1+1°—1(—;;1—))
<Pl R v = S RO, )

thus (2) holds. O

Lemma 7 If there are A simple C X -segments on C, then

b-1+k
a.b(X)<______+__

< T2 ((X) - Ma(X) 0 Kx] = ).
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Proof Consider that X = {z},z5, -,z }and Jx = UL, Clz},viq] Fort € {1,2,--

partition
C[‘”Q’ ”£+1] \ U(NI(X) n C'[:c;, v;-{»l])
1>2

into s; C X-segments

Cl, ), Ol ), -, Clailz),
in which there are \; simple C'X-segments

Clz11, 712), Clza1,222), -+ -y Cleaa, 2a2)

and the other non-simple C'X-segments

C[Zilv zﬁz)» C[Zél’zgz)’ A C[ZL‘—A;I’Z;.—,\J)'
Set
Ay k k
pe = |Clzia, z2)l, p=D_p A= A
=1 t=1 t=1
So
8¢— )\z
Z IC 11 2 ] = lc[ztvvcﬂn ~pt— | U(NI(X) n C["’L”éﬂ])l-
>2

By Lemma 6(2), we have

ou(Clzly viy1], X) = 3 au(C21), 21, X)
=1
8;-—/\1 /\1
= Y a(Cl2hy, i), X) + Y au(Clzjn, 2j2), X)
=1 J=1
8$¢— /\1 /\
b—14% .
< Z TIC[ b ,z )N+ Zb |Cz51, zj2)| — 1)

J=1 3=1

b—1+k

= “T—(Ic[mivvéﬂ]] ~ pt ~ | U(NI(X) N Clzg, vy 1)) + b(pe — Ae).

>2

Notice that Jx = Uf, Clzl, vipq), p= S5 pi;and A = 5 A,. Thus

I
M=

ao(Jx, X) ou(Cles, vige]s X)
t=1
N b—1+k
< Z(*"‘“‘z (IC[‘”;W;H - pe— | U N(X)nC] 17t,vt+1])l) + b(ps —
t=1 >2
b—-14+k
—-—~——|JX| p— 1 UJ@(X) 0 Tx)]) + b(p - A).
1>2
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Notice that V(G) = Jx U Kx, n(X) = [V(G)\ Upso(Ni(X))], and b < b=1tk g5 by
Lemma 6(1), we have

op(X) =op(Jx,X) + op(Kx,X)

S Wl == YO 1) + e - )+
b1Kxl = W) 0 Kxl = U400 0 Kx))
S G|V CTCO LI
o = Ak x| = () 0 Kixl = | (400 0 Kx))
S IVIO\ U MOOD = I9(3) 0 Fx] -3
:t-;—ﬂ(n(X) _[Ny(X) N Kx| - A).

Lemma 8 Let ig € {1,2,---,k}. If v € So(X), then Xiy_; > 1; if v}, ¢ So(X), then

there exists z € No(X )N Kx N N(v ). So [No(X )N Kx|+ Aig—1 > 1 (where A;,_1 be the

number of simple C X -segments in Clz; _,,v; ]).

Proof If v; € So(X), then there exists an simple CX-segment C|z,z%) in Clz} _,, v} ]
(where z7 € C[a] _y,v;,]is the last vertex not in So(X)), s0 Aj,—1 > 1; if v}, ¢ So(X), then
there exists ¢ € N(v! )NV(H), such that 2 € N3(X)N Kx. So [No(X)N Kx|+ Ajp-1 > 1.
a

Now we consider a graph G’ other than G. In order to distinguish the notations such
as N(U), Si(X), N;(X), Kx, n(X), 0,(X) introduced for G, we will simply add a prime
to the notations with respect to G'. For example, N'(U), S/(X), etc.

By the proof of Theorems 9,10 in [5], we have the following two Lemmas.

Lemma 9 Assume that G be a (k 4 1)-connected graph with k > 2, and there exists
some w € V(G) such that G’ = G — w is non-hamiltonian. Choose a cycle C of G' such
that

(i) |NG(w)| is maximum; and

(ii) subject to (i), C' is maximal.
Let H be a component of G' —V(C), and N;(H) = {v1,v2,- -, v, } (m > 3)with the con-
vention that vy,vsq,- -+, v, occur on C in the order of their indices. Set z; as the first non-
insertible vertex in C(v;,v;41) for each i € {1,2,---,m}. Then Xp = {29, 21, *,2m} €
I.+1((G')") (where zq is an arbitrary vertex of H ), and there exists X C Xp \ {20} such
that X € I(G*). O

Lemma 10 Assume that G is a connected non-hamiltonian-connected graph, there is
some {uy,us} C V(G) such that G contains no (uy,uz)-hamiltonian-path, and there exists

a (u1,uz)-path P such that
(i) V(P) 2 N(uz);
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(ii) subject to (i), |Np(uy)| is maximum;

(iii) subject to (i), (ii}, P is maximal.

Let H be a component of G — V(P). Denote by G' the resulting graph obtained from G
by adding a new vertex w and two new edges wiw,usw. If |Np(H)| > k + 1(k > 3), then

(1) In G', C = Pluy, uz]wuy is a maximal (choose the orientation of C' agree with that
of P), but not hamiltonian cycle of G'; H is a component of G' — V(C).

(2) Let {vy,v3, --,vm} = NL(H) = Np(H). Then vy, # ug, there exists the first
non-insertible vertex z; in C(v;,vi41) fori € {1,2,---,m}, wherem > k+12> 4; Xy =
{z0,21, *,2m} € Lns1((G')*)(where z is an arbitrary vertex of H).

(3) There exists X C X\ {zo}, such that X € I(G*). O

3. Proofs of the theorems

Proof of Theorem 1 By contradiction. Suppose that G is non-hamiltonian. Let C be
a longest cycle of G, and H a component of G — V(C). Since G is a k-connected graph
with k > 2, we have |Ng(H)| > k. Thus there exists {vy,v2, -, v} C Ng(H) (where
V1,02, -,V occur on C in the order of their indices, and m = k). By Lemma 1, for
each i € {1,2,---,k}, choose z; the first non-insertible vertex in C(v;,v;4+1). By Lemma
3, X = {2:1,2:2,- oz} € Ii(GT).

On the other hand, by Lemma 8, we have |[No(X) N Kx| + A; > 1 (where A be the
number of simple C X-segments in C[zq,v;], and A > A;.). Thus by Lemma 7 , it is easy
to see that

a(X) = SINC] < “ 5 (X)X 0 el - ) < T E ) - ),

a contradiction. O

Proof of Theorem 2 By contradiction. Suppose there exists some w € V(G) such that
G’ = G ~ w is non-hamiltonian. Choose a cycle C of G’ such that

(1) |N&(w)| is maximum; and

(ii) subject to (i), C' is maximal.
Let H be a component of G'~V(C). Since G is (k+1)-connected with k > 2, [NL(H)| > k.
Let NG(H) = {v1,va, -+, v} (m > k) with the convention that vy, vs,--,v,, occur on
C in the order of their indices. Set z; as the first non-insertible vertex in C(vi,viy1) for
each i € {1,2,---,m}. Let X,, = {21,,22-*,2n}. By Lemma 9, there is X C X,., such
that X € I(G*).

On the other hand, note that

\
oy({w}, X) = 3 IN(X)n{w}| < €k < (b~ 1+ k)

where { = 0 if w € Sy(X), otherwise { = 1. Clearly, n/(X) < n(X) — €. By Lemma 8,
|N2(X) N K%| + AL > 1 (where A/ are the number of simple CX-segments in Clz1,vp] of
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G'), and X' > X|. Thus by Lemma 7, we have

k k
= 2 INX) < DT IN'(X)| +E(b - 1+ k)

=1
=o'y (X)+€(b~1+k)
< SR W)~ V) 0 K - X) + 66— 14 )
<P )~ 14 2¢)
< E:_iﬂ(n()() —-€E-1+4 25) < _b__lﬂn()(),

2 2

a contradiction. O

Proof of Theorem 3 Suppose that graph G satisfies the conditions but is not hamiltonian-
connected. Then there is some {u;,u2} C V(G), and G contains no (u,uz)-hamiltonian-
path. By Theorem 2, there is a hamiltonian cycle C’ in G — u,. Choose an orientation
of C'. Let C'(uj,u1) N N(uz) = 0 and uh € N(uy), then the (u1,uz)-path C'{us,ubjus
contains the set N(u;). Thus one can choose a (uy, uz)-path P such that

(i) V(P)2 N(up);

(ii) subject to (i), |Np(u1)| is maximumn;

(iii) subject to (1), (ii), P is maximal.
Let H be a component of G—V(P). Add a new vertex w and two new edges uyw, usw to G
and denote by G’ the resulting graph. By Lemma 10(1), C = Pluy, uz]wu, is a maximal
cycle in G' (choose the orientation of C' agree with that of P), but not hamiltonian
cycle of G’; H is a component of G’ — V(C'). Let {vy,va,--,vn} = NL(H) = Np(H).
Since G is (k + 1)-connected with k > 3, m > k+ 1 > 4. By Lemma 10(2), v # us,
there exists the first non-insertible vertex z; in C(v;,v;y1) for ¢ € {1,2,---,m}; Xpr =
{z0,21,"*,Zm} € Lnt1({G')*) (where zo is an arbitrary vertex of H). By Lemma 10(3),
There exists X C Xps \ {zo} such that X € I(G~).

On the other hand, by the construction of G, n'(X) < n(X) + 1. By Lemma 8,
INJ(X) N K'%| + AL > 1 (where A{ be the number of simple C X-segments in C[z1,v;] of
G'), and X > A{. Thus by Lemma 7, and the construction of G', it is easy to see that

k k
a(X) = YINCR) < 2 IN(X)] = (X)
1=1 i=1
< 2 R ) - 1m0 0 Ky - V)

— , b—-14+k
e S ]

a contradiction. O
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Ore E I2 89 # J

B
(1. RS SRR, LHF B 210097;
2. IHBEERBEESHRVMER, LH W 210013)

B %GR, GHOmATHEG MR V(G = V(G), E(G*)= E(G)U{w :
wv ¢ E(G), HJ(u,v) # 0}, KE J(u,0) = {w € N(w) N N(v) : N(w) C N[u] U N[o]}. &
IHBRA I BT T b 8 (k+ 1)- i (k > 2) B G RBE/RTS, 1- 1B

B IR S B RO R — IET. HIOAMR IR G hET 5 IN(Y) 5 n(Y) 8
=1

Z:QTEJ_?Q: 3\3._% Y = {yl,y2,"'ayk} ﬁ:[g] G” E"]{%'—"z}kj‘.%’ X‘T:j: S {1‘23"'ak}’ K =
{vigi-1, ¥ic-1} CY (y; BITHRREBALE) 5 b B—MEH BHOo<b<k;
(Y) = [{v e V(G) : dist(v,Y) < 2}].

SCHEIA): WEEUREE ABRIE M BT AL
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