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Abstract: This paper is concerned with a delay difference systems arising from an arti-
ficial network model of two neurous with piccewise constant nonlinearity. The difference
systemns can be regarded as the discrete analog of the artificial neural network of two
neurons. Some interesting results are obtained for the asymptotic behavior of solutions
of the systems.
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1. Introduction

Recently, there has been increasing interest in the study of the asymptotic behavior of
solutions for delay difference equations and differential equations with piecewise constant
argument. See, for example, [1-6] and the references cited therein.As mentioned in Cook
and Wiener{!l and Shah and Wiener!?, the strong interest in such equations is motivated
by the fact that they represent a hybrid of continuous and discrete dynamical systems
and combine the properties of both differential and difference equations.In this paper, we

consider the following delay difference system:

2, = -1+ (1 = A) f(¥n-r), — ..
{ Yn = Ayn—l + (]‘ - A)f(icn—k)’ "= 1)2, , (11)
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where A € (0,1), k is a positive integer, and f: R — Ris a piecewise constant nonlinearity
function given by

)1, te(-a,0],
£(€) —{ 0 e (—00,—0]U(ax) (1.2)

for some constant o € (0, 00).
System (1.1) can be derived from the discrete analog of the following artificial neural

network of two neurons with a piecewise constant argument

¢ = —pz + Bf(y([t - 1))
{ g = —py+ Bf(=(t - 1)), (1.3)
dy

where 2 = %’—f and y = 5, p > 0 and B > 0 are given constants, ! is an nonnegative
integer, f is a signal function given by (1.2), [t] denotes the greatest integer in ¢.

As we know, system (1.3) has also wide applications in certain biomedical models. For
the backgrounds on system (1.3) and some other systems of differential equation involving
piecewise constant argument, we refer to [3]. It is easy to convert (1.3) into a discrete
system (1.1). In fact, we may rewrite (1.3) into the following form:

L((t)er) = e Bf(y(t - 1)),
{ (y(t)ert) = e Bf(=([t - 1])). (1.4)

Let n be a positive integer and k£ = [+ 1. Then we integrate (1.4) fromn—1tot € [n—1,n)

I

i

a

t

to obtain
z(t)e't — z(n — 1)ertn=1 = ‘/—f(e”t — e“(”‘l))f(y(n — k)), (1.5)
y(t)ert — y(n — 1)ern=1) = B(ent — oin=1)) f(2(n — k). '
Letting t — n, we get from (1.5)
{ o(n) = e~¥a(n — 1) + £(1 - &) f(y(n - 1)), w6)
y(n) = e7#y(n — 1) + L(1 - e7#) f(2(n - k). ‘

Set z;; = Lz(n) and y; = Gy(n) for any nonnegative integer n, f*(v) = f(Lu), 0" =
50,2 = e7#, and then drop x to obtain (1.1).

For the sake of simplicity, let N denote the set of all nonnegative integers. For any
a,b € N, define N(a) = {a,a+1,---} and N(a,b) = {a,a+1,---,b} whenever a < b. In
particular, N = N(0). By a solution of (1.1), we mean a sequence {(zn,yn)} of points in
R? that is defined for all n € N(—k) and satisfies (1.1) for n € N. Let X denote the set
of mappings from N(—k, —1) to R?. Clearly, for any & = (¢, %) € X, system (1.1) has an
unique solution {(z,,,y,)} satisfying the initial conditions

z; = ¢(1), i = (i), for i € N(-k,-1). (1.7)

Our goal is to determine the asymptotic behavior of {(z,,y.)} as n — oo for any ® € X,.
In particular, we concentrate on the case where ¢ + 0,9 — o and ¢ + 0,9 — o have no sign
changes on N(—k, —1). Namely, we consider those & € U?,j:l Xij = X,, where

Xii={2€X;®=(p,¥),p€ R; and Y € R}, 4,7=1,2,3,
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with
Ry ={p;p: N(—k,—1) > R and ¢(i) < —0o for i € N(~k, -1)},

Ry ={p;p: N(~k,~1) > Rand — o < ¢(i) < o for i € N(—k,—1)}

and
Ry ={p;p: N(-k,~1) > R and ¢(i) >0 for i€ N(-k,~1)}.

In this paper, we only consider the case where ¢ > 1. The case of 0 < o < 1 is
considered in another paper. The main results of this paper are as follows

Theorem 1.1 Let ¢ > 1. Then (2,,y,) — (1,1) as n — oco.

Theorem 1.2 Let ¢ = 1. Then the f'olléwing conclusions hold.

(I) If & € Xy, then (z,,yn) — (1,1) as n — oo;

(II) If & € Xa3,then (2,,y,) — (0,1) asn — oo

(IIT) If & € X33,then (2,,y,) — (1,0) as n — oo;

(IV) If ® € X33.Then
(i) (zn,yn) — (1,0) as n — o0, and p(—1) > P(=1)A%,
(ii) (2n,¥n) — (1,1) as n — 00, and P(~1) < p(—1) < P(-1)A17¥,
(iii) (zn,yn) — (0,1) as n — oo, and P(—1) > (—1)A7F,
(iv) (2n,9n) — (1,1) as n — o0, and (—1) < P(-1) < p(-1)A1-F,
(v) (Tnyyn) — (1,1) as n — o0, and p(-1) = P(-1);

(V)IF® € X1:UX12U X2, then (2,,y.) — (1,1) as n — o0;

(VI) Ife € X31, then
(i) (2n,¥n) — (1,0) as n — o0, and p(—1) > —p(—=1)A7¥,
(ii) (2, ¥n) = (1,1) as n — oo, and —P(~1) < p(—1) < ~P(=1)A1~%,
(iii) (zn,yn) — (1,1) as n — o0, and —9(-1) > ¢(-1);

(VI If & € Xu3, then
(i) (zn,yn) — (0,1) as n — oo, and P(-1) > —p(~1)A7%,
(i) (2n,Yn) — (1,1) as n — 00, and —p(~1) < P(-1) < ~p(-1)A?7F,
(iii) (zn,yn) — (1,1) as » — o0, and —p(-1) > P(-1).

2. Proofs of main results

Proof of Theorem 1.1 We distinguish several cases.

Case 1 Let & = (¢, ¢)T € Xa.
In view of (1.1), we see that

z, = Aep1+1-, 21
{yn:)‘yn—l'f’l—/\ ()

for n € N(0,k — 1). Therefore,

2n = (p(=1) - 1)A™ 4+ 1,
{ Yn = (z(—l) - 1A 41 (2.2)
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for n € N(0,k — 1).
Note that
—o<(—o—A"H r1<z, <(o- 1A+ 1<,
o< (e —1A 4 1<y, <(e-1A" +1<0

for n € N(0,k — 1), it follows that (2.1) is satisfied for n € N(k,2k — 1). Thus, —o <
z, < 0,—0 < yu < o, for n € N(k,2k — 1). Repeating this procedure, we can obtain that
(2n,yn) satisfies (2.2) for all n € N, from which we know that (z,,3.) — (1, 1) as n — oo.

Case 2 ¢ € X, — Xo.
From (1.1), we see that

Osxn—'kzn—l Sl_A,
{ 0<Yn~AYn-1 <1-A (23)
for n € N. By induction, this implies
— n+1 _ _ n+1
[ADNNEnsbl NN wew. Gy

Hence, we see that there exists a positive integer m; such that —e < 2z, < o,-0 <y, <0
for n € N(my). Thus, by (1.1) and (1.2), we can obtain

n € N(my + k),

z'n = (xml+k~l —_ 1)Aﬂ-ml—.k+1 + 1’
Yn = (Ymy+k-1 = 1),\”‘"‘1-k+1 +1,

therefore (2,,y,) — (1,1) as n — oo.
This completes the proof of Theorem 1.1.

Proof of Theorem 1.2 The conslusions (I),(II) and (III) can be proved by a similar
argument as that in Case 1 of Theorem 1.1.

Now we consider (IV). Let ¢ € X33.

Case (i). ¢(—1) > ¥(—1)A7*. From (1.1), we see that (z,,y,) satisfies

z, = p(-1)A"+1,
Yn = "/)("1)’\n+1

for n € N(0,k — 1). Let m; be the least nonnegative integer such that

(2.5)

Ymy-1 > 1, Yy < 1.

Then (2.5) holds for n € N(0,m; + k — 1). By (2.5),

and

Tmy+i = ‘P(_l))‘mH'i_H > ‘l,b(—l))\m‘+i+1—k
ZP(-DA™ =y, 1 > 1, i€ N0,k —1).
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Thus, 2,4 > 1, ~1 < Y, < Lfor i € N(0,k — 1). By the conclusion (IIT), the case (i)
can be proved.

Case (ii). 1 < H=33 < A1k,

By the same argument as in that of (i), we have

0 < Ty pho1 = Q(=1)A™FF <) amiFERI=R =y <,

1

and
0 < Ymy4ko1 = Y(~DA™MTF < p(—1)A™ ¥z, 1 <1,
which implies
-1<2z, <1, -1<y, <1, forn€ N(my +k—1).

Therefore (2,,y,) satisfies (2.1) for n € N(my + 2k — 1). By iteration, we have (z,,y,) —
(1,1) as n — oo.

Case (iii) and Case (iv).

The proof of case (iii) follows from (i) and the symmetry of (1.1), and the proof of the
case (iv) follows from (ii) and the symmetry of (1.1).

Case (v) p(-1) = (-1).
Using (1.1), we can easily obtain that z, = y, for all n € N. Clearly, z,, satisfies
equation

2o =Apno1 4+ (1= A)f(zn-k) (2.6)
with initial conditions z; € Rj3 for ¢ € N(—k,—1), and by (1.2), we have

2, = p(~1)A" ne N(0,k—1). (2.7)
Assume that m; is the least nonnegative integer such that
Tym-1> Lz, <1
Then (2.7) holds for n € N(0,m; + k — 1). By (2.7),
0 < T4kt = (DA™ < (1) A™H = 2, <1,

which implies —1 < Zp, 4k 1 A" ™ F1 < 20 < (T ko1 — DAT™TFL 41 < for
n € N(my 4+ k — 1). Therefore,

Tpn=Ap_1+1-A, ne N(imy +2k—-1).

By iteration, we get z, — 1 as n — 00, and thus (z,,¥,) — (1,1) as n — oo.
Next we prove conclusion (V). Let & € X11J X122 Xa1.
We only prove the case of ® € X5;. The cases with & € X;; and ® € X, are similar.

By (1.1) and (1.2), we see that
Tn = Sp(-—]_)A'H'I,
{ ¥n = [$(=1) — A 41 (28)
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for n € N(0,k —1).
Assume that m; is the least nonnegative integer such that

Ying —1 < ‘1; ynn _>._ "1-

Then (2.8) holds for n € N(0,m; + k — 1). By (2.8),

1 <Ymg S Ymi+i = [¢(-1) - 1]’\1,“+i+1 +1<1, e N(0O.k ~ 1
{ -1< Ty +i = (P(—'l)/\”“+l+l < la L€ ( ’ ),
by conclusion (I), conclusion(V) can be proved.
Conclusion (VI) and Conclusion (VII) can be proved in a fashion similar to Conclusion
(IV). We omit the details.
This completes the proof of Theorem 1.2.
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