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Abstract: This paper is the third part in a series of papers on adaptive finite element
methods based on optimal error estimates for linear elliptic problems on the concave
cerner domains. In this paper, a result is obtained. The algorithms for error control
both in the energy norm and in the maximum norm presented in part 1 and part 2 of
this series are based on this result.
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The purpose of this series of papers is to present an adaptive finite element method for
the approximate solution of linear elliptic problems. The method is based on optimal a
priori error estimate for the finite element method, and the regularity of the unknown exact
solution is estimated in terms of difference quotients of computed approximate solutions.

This is the third part in a series of papers on adaptive finite element methods based
on optimal error estimates for linear elliptic problems on the concave corner domains. In
the preceding two papers[6'7], we presented an adaptive finite element method for the ap-
proximate solution of linear elliptic problems on concave corner domains. The algorithms
that we presented in the Part 1 and Part 2 are based on the result of this paper.

The problem of constructing adaptive finite element methods is of great practical
importance . For pioneering work we refer to [1], [2], [3].

Now we recall that our algorithm applied to this problem could generate in at most
two steps of successive adaptive refinements a mash T’ and the corresponding approximate
solution U so that |[|V(u — U)||z,(a) < ¢ for any given tolerance § > 0. And furthermore
we had that |lu —~ Ullp_ @) < C(61g L+ §1-(1=8/2)"*") The above methods that we got
are based on a very important result that |V(u — U)| < Ch(z)|z|?~?%,|z| > C’h. In this
paper, we will prove the above result.
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1. A model problem

As a model problem, we will consider the Poisson equation
—~Au=fin Q, u=0 on T, (1)

where Q has a concave corner with the interior angle 7/, % <@g <l
We assume that f is a smooth function and that the vertex of the concave corner is

located at the origin. We havel?]
|D*u(2)] < clel’~ 1, z € Q,lal <3. (2)
Furthermore, assume that for some positive constant C
|D*u(z)] > Clz|P2, z€Q, (3)
so that the exact solution has a non-trivial singularity near the reentrant corner at the
origin.
For the discretization of the problem and for triangles K of the partitions T of polygonal
domain {1, we will assume that

chgg/ dz, VK € T.
K

For triangulations 7, we define the corresponding space of continuous piecewise linear
functions vanishing on the boundary I' of )

Vi={veC(Q):v|g € P(K),v|r =0,VK € T}

and the corresponding approximate solution U € Vj, of the given model problem is defined
by
a(U,v) = (f,v), Yve W, (4)

where a(w,v) = [, Vw - Vode, (f,v) = [ fvdz.
Under these assumptions, our algorithms will generate triangulations of Q with the

following characteristics: With h > 0, 0< a < land d > RV~ for 2 € K ¢ T, we
have

hlz|®, |z| > d,
hg ~ h(z) = { hd*, |z| < d, (5)
where h(z) is the local mesh size at z.
It is well known that!®
flv - vi“LP(K) + hx ||V (v - vi)“LP(K) < Chi{l'Dzv“LP(K)’ KeT, (6)

where v; € V}, is the Lagrange interpolate of v. And we have proved the fo]lowing[‘s]’["]

Theorem 1 Let u be the solution of (1) satisfying (2) and (3), and U € V}, be determined
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by (4) on a partition T of  as in (5) with a = 1 — 3/2. Then there is a constant C such
that

[D*u — D¥My| < %Dzu, |z] > Ch, (7)
|D**U| < ChP~2, |z| < C, (8)
where A = hd®.

Theorem 2 Let u be the solution of (1) satisfying (2). Under the assumptions of Theorem
1, there are constants C; and C such that

log rlyh(2)?2]P~2 + bz, |2| > Ch,
B

o) - v < AxE

—_

Our analysis for Theorems 1 and 2 is based on the following theorem

Theorem 3 Let u be the solution of (1) satisfying (2), (3), and U € V}, be determined
by (4) on a partition T of Q as in (5) with a = 1 — §/2. Then there are constants C and
C’ such that

V(u(z) - U@)| < Ch(z)eP?, Jol > C'k (10)

In preparation for the proof of Theorem 3 we will give a useful estimate for the Green’s
function G associate with the boundary value problem (1).
Let G(y, z) be the solution of

-AG(y,z)=6(y—z) in @, G(y,z2)=0 on T,
where § is the delta distribution.

Lemma For domain Q in (1), there is a constant C such that

92 [ ylP~212|7P, |yl < }lal,
_______G , < C - ] >
Iaykayj .2l < { ly—z7% |yl > %ll!-
93 [y[P=2]z|~A" 1, Ilyl < 3lzl,
|5—'5'—_5—7G(y,z)( <CK |ly-273, 31zl < |yl <22,
YeOU5 0% ly|=P=2|z1P~1, 2|2 < |yl.

It is easy to verify the above estimates. Now we consider the proof of Theorem 3.

2. Proof of Theorem 3
Proof Let z € K € T and let 6 an approximate delta function on K such that

/ Sic(z)dz = 1,
K
— 275 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



and
6k \lLpry < Ch2THE, P =1,2. (11)

With §; = 52—,,1' = 1,2, we havel®

V(4 = U)llzwx) < Chl2)|2)’* + max|(u - U, 8:8k)|, (12)
In order to estimate the last term in (12) , let p = ¢; be solution of
-Ap =0k, in Q, =0, on I', 1=1,2 (13)
From the representation

e(y) = /G(y,z)&-&x(z)dz = — / ;;G(y,z)&{(z)dz, veN,i=1,2
B k

where G(y, z) is the associated Green’s function as above. Notice

32
Oy 0y;

b
= — @G ik, = .
f(y) ‘/aykay.laz1 (y,z)5K(Z)dZ’ 1, K, 112

In view of (11) and lemma, we have
|yl =2l2| =%, Jyl < el
ID*p(y)l < C 1 ly— 2|73, 3zl <y < 2lel, (14)
lyl=0=22lP1, 2]z < yl.
From (14) and (11), we have
IVeli, @) = (=8¢,¢) = (8, p) = (6k,—0i¢) < 6kl I VPl La(a)s = 1,2,

and hence
IVellL,@) < Chg' (15)

Let ¢, € V3, be the Ritz projection of ¢;
a(v,p—pn) =0, veV,
and put e = ¢ — @p, p = u — u;, u; € Vj, is the Lagrange interpolate of u
(u—U,0:8k) = (u—-U,-Ap) = a(u - U,p) = a(u—U,e) = a(p,e), i=1,2. (16)
By the same arguments as in [5], we get

la(p, )] SC( Y 1VllLwic;)dill Vello; + VAL Bar)dnlI Vel By +
J€Jo

2. 1Vollzwm il Vellz, + Vol Vello,) < €A+, (17)
JEN2
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I=h(z)|z’~? Y d;(|Vellc, + Y hid? *(|Vells, + b®(|Ve[lq,,
J€Jo j€J12

IT = h(z)|z|"2dm|[Vell sy,
Bi={yecQ:ly—=z| <27,
Ci={yeQ:277<|y—2|< 2~y
Qj = {y € Q\Bpya: |yl <277},

E]' = {?/ € Q\Bm+2 : 2_j < lyl < 2_j+1}-

We define d; = 277 m is determined by d,, < |z| < 2d,, and
Jo={j€Z:m+3<;< M}, hi={jeZ:j<m}

Jo={j€Z - m+1<j<I}, Jiz=J1UJy,

where I, M € Z and Ch < d; < 2Ch, Ch(z) < dyr < 2Ch(z).
We will show that for suitable choice of I and M

Vel < Cdu, (18)

1< T4 O(h(e)lel + h(2)el~2du [ Vells,, + Bzl ~). (19)
Combining (12), (16), (17), (18) and (19) yields estimate (10), since
h¥ < Ch(z)R™! < Ch(z)|2|**~?, |z| > Ch.
By stability of the Ritz’ projection, we have ||Ve|| < ||V¢||, and (18) follows at once

from (15).
For the proof of (19) we recall the local error estimatel®]

IVello, < CIV(e - :)lloy + d5 lellon), (20)

where ¢; € Vjis the interpolate ¢, D; may be any one of the sets Cj, E;,Q; and D;
denotes the union of the sets D; and its direct neighbors in the partition of {1 into the
sets C;(7 > m+3), E;(j € J12), Qy and D" = D'\D.

According to (5), (6) (14), we have

V(¢ = @)lle; < Ch(z)d;?, € Jo,

hid] Mx7A71, j € T,

— ©; <
19(e so,)nE,._c{ ot e

V(e - ei)llay, < CA|z|7P7
By the fact h(z) < Cdy,h(z) < Clz|, A < Cdj, we find that

h@)zlP7* ) dil| V(e - @ille; < Ch(z)*|2lP~2 Y d5t < Ch(z)*|z|°~2dyf < Ch(z))z)~?
J€Ja Ji€do
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and
> hid] V(e - illle; < C(Y0 B3P (2|P0 + 37 hid;%elP)
j€J12 j€J2 jeN
< C(R*dP 72| P! 4 h(2)*|2]P~3) < C(B®|2|™P~ + h(z)|z/’~?)

using (20)
1< C(h()l2]’~2 + h*|2| P + h(z)|2l Y llellc; + 3 hidi llells; + h%d7* [lelln,
j€Jo j€diz
(21)
In order to estimate the term |le||c;, let ¢ = ¢; be the solution of
—-AYy=¢ in Q, =0 on T, (22)

where ¢ = ¢/|lellc; in Cj, ¢ = 0 in Q\C;. Again we will use a representation of solution
in terms of the Green’s function. We have [

P(y) = y7° sin 9 + ¥i(y), (23)
where v = v, = [ €£(2)e(2)dz/|lellc;, [€(2)| < C|z|7# with
il < Cdjlef™? (24)

and
il g2 ey < C. (25)
By (5), (6), (23), (24), (25), we have

did:t, k€ Jo,k >
v _ i < Ch _ 7 ) - 1
V(¥ = ¥i)llBy < Ch(z)dyd;?, (27)
& Nz|~Pd;, keJ
V(v - < Chp J’ o
and finally, we get(®
IV = ¥i)lla, < ChP|z|"d;. (29)
By the standard duality arguments and (26), (27), (28), (29), we have
lelle; <C( 30 h(2)didiM|Velle, + 3 h(2)di d;|| Vel +
keJo k> j kedo k<j
h(2)dmd; [Vellsy + D hudy Vel d;||Vellg, + £P|2)"Pd;||Vela,,
keJ2
and thus
Ch(z)[z*~2 3 lelic; < I+ Ch(z)|zl"*du||Vel| s, - (30)
Ji€Jo
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By the argument similar to used above, we find that

- 1
C 3 hidi|lells; < Z1+ Ch(z)|z|*~dp| Vells,, (31)
€1z
— 1 -
ChPd7 ella, < G1+ Ch(z)lz|*~*du|Vells,,. (32)

The estimates (21), (30), (31), (32) complete the proof of the Theorem 3.
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