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Abstract: This paper presents the Bayes estimation and empirical Bayes estimation of
causal effects in a counterfactual model. It also gives three kinds of prior distribution of
the assumptions of replaceability. The experiment shows that empirical Bayes estimation
is better than other estimations when not knowing which assumption is true.
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1. Introduction

Causality plays an important role in modern medical, behavioral, social and biological
sciences. The central aim of studies in these fields is to elucidate the causal effects among
variables, only through which the effects of some actions or strategies can be predicted.
The possibility of learning causal relationship from raw data entered the realm of formal
treatment and feasible computation in the mid-1980s when the mathematical relation-
ship between graphs and probabilistic dependency came into light. The counterfactual
causal model given by Rubin!l and causal graph model given by Pearl®3] constitute the
framework of causality. Pearll described that causal relationships can be inferred from
nontemporal statistical data if one makes certain assumptions about the underlying pro-
cess of data generation. As we know, causal relationship cannot be completely determined
by the correlation. So it leads to the identification problem in the analysis of causal ef-
fects. If the causal effects are identifiable, we can computer them from the observed data.
Zheng et al.%! investigated the identifiability of causal effects of a control variable on a
resulting variable in a simple counterfactual model, and presented three assumptions of
replaceability and the formulas of computing causal effects. However, any causal assump-
tion cannot be realized by imposing statistical assumption, that is, we cannot determine
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which assumption is suitable for a causal model. Therefore it is necessary to look for good
estimations of causal effects.

2. Causal model in this paper

We call M = (G,O¢) a causal model where G is a directed acyclic graph (DAG) over
a set V of variables and Og is the set of probability parameters. Causal model can predict
the effect that any external or spontaneous changes have on the distributions.

In this paper, let X', ), Z denote the domains of X,Y, Z respectively, where X =) =
Z ={0,1} and X is a control variable, Y is an outcome or response variable, and Z is a
covariant variable. The causal graph DAG G is given in Fig.1.

VA X

Y
Fig.1 DAG G
Since the joint distribution P of (X,Y, Z) can be estimated from the observed data,

we assume that the distribution of (X,Y, Z) is known and the compatibility of P with
DAG G in Fig.1 implies that

P(z,y,2) = P(2)P(z|2) P(y|e, 2).

In Pearl’s framework, an intervention is to force a subset X of V' to be fixed values z,
written by do(X = z), thus defining a new distribution over the remaining variables that
characterizes the effects of the intervention. Here, we do intervention to control variable X
and investigate the causal effects of X on Y. Let variable Yj also be binary with domain
{0,1} and identical to Y when do(X = 0), so we use P(Yp) to represent the distribution
of Y under the intervention do(X = 0).

Definition 1 P(Yp) is called the causal effect of X =0 on'Y or causal distribution of Y
when do(X = 0).

Because the method to discuss intervention do(X = 1) is as same as do(X = 0), we
only investigate the case of do(X = 0).

3. Identifiability of causal effect

We adopt the following notation to simplify presentation
¢c=P(Z=1),a=PX=1Z=0), a1 =P(X =1|Z =1),
bij=PY =1|X =4,Z =j), i,j =0, 1.
Then

P(Z=0)=1-c85 PX=0Z=0=1-a2am PX=0Z=1)=1-02a

1.
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Using the same methods as [5], we derive four assumptions of replaceability for the
joint distribution P of (X,Y,Z,Yp), and only under one of them could the causal ef-
fect of X = 0 on Y be identifiable. This distribution can be expressed by param-
eters (c,ap, a1, boo, bo1, 10, b11, %10, 411), where ujg = P(Yy = 11X = 1,Z = 0) and
uyy = P(Yp = 1/X = 1,Z = 1) are unknown. Our purpose is to know the effect of
X on Y, that is to know the value P(Y = 1|X = 1) — P(Y¥p = 1|X = 1) which reflects
how much the control variable affects the response variable. P(Yp = 1|X = 1) implies the
counterfactual probability of Y = 1 if we force X = 0 given X = 1 and it is different from
P(Y = 1|X = 1) which means the conditional probability of Y = 1 given X = 1 and can
be computed from data but P(Yy = 1]X = 1) cannot. Obviously, the more the difference
between P(Y = 1|X = 1) and P(Yp = 1|X = 1), the more the effect of X on Y. The
difference can be derived from the identifiability of P(Yp = 1), for

PYp=1X=1)= EI:P(Y;J =1X=1,Z=/)P(Z=jX=1)
=0
P(X =1|Z = j)P(Z = j)
St oP(X =1|Z = k)P(Z = k)

1
=Y P =1X=1,Z =)
j=0
_ u10@0C + uzj01C
N ao+aic

Therefore, the identifiability of P(Yy = 1|X = 1) is equivalent to the identifiability of
P(Yy=1) and
P(Yy = 1) = bpo@oC + bo1@ic + u10a0C + unraic.

We present this result by a theorem.

Theorem 1 Suppose the joint distribution P of (X,Y, Z,Y;) satisfies
(H) X L Y, or
(H2) X LY|Z, or
(H3) X LY|Z=0,Yp L Z|X =1, 0r
(HY) X LY|Z=1,Y1Z|X=1
Then P(Yy = 1) is identifiable and has the following form:

boo@qC + bp1azc : .
Tt Faic I_f (X L Yo)p;
P(Yp=1)={ YooC+borc if (X L YolZ)p; 1)

boo€ + bpraic + bppaic if (X 1 Yo‘Z = 0)p N (Yo 1 ZIX = 1)p;
boo@oC + boragC + borc  if (X L YoIZ = l)p N (Yb 4 ZIX = l)P.

Here | means independence between two variables.
The proof of this theorem is similar to that of Theorem 1 in [5].

Definition 2 The assumptions for P given by (2)
(X LY))U(X LY 2WJ((X LY|Z=0)Nn (Yo L Z|X =1))U
(X 1Yo|Z=1)N (Y L Z|X =1)) (2)
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is called the replaceable assumptions.

Though the causal effect is identifiable under those assumptions, we cannot determine
which assumption is suitable in the model from observed data. Therefore, in a stricter
way, the conclusion in Theorem 1 cannot be called identifiable results. Generally people
choose one according to experience or objective situation. In the next section, we show
how to estimate P(Yp = 1) from observed data.

4. Bayes estimation of causal effect

For a causal model (G,B¢g), our focus is to estimate P(Yp = 1) given the data. In
order to do this we must suppose that P(Yp = 1) is identifiable. Let 6 be the parameter
of observational variable (X,Y, Z) and H = ¢ represents assumption (Hi) in Theorem 1,
1 =1,2,3,4. Because we want to use Bayes method, the distribution parameter 8 and
the assumption H are all random variables. Therefore the variables corresponding to our
problem are (X,Y, Z,Yy,6, H) and

P(a:,y, 2, y0707i) = P(IL‘,y,Z, y0|0,z)h(0, 7’) = P('Ta Y, 2, yOle)h(ev 7’), (3)

where h(6,1) is the join distribution of (6, H). Because (X,Y, Z,Y}) is independent of the
replaceable assumption H, P(z,y, z,y0|0,1) = P(z,¥y, 2,Y0/0) in (3).
At first we consider a simple case which has another assumption — § is independent

of H, that is
h(8,1) = h(0)m;,

where k() is the prior distribution of 6 and ; is the prior distribution of H. Let

where « is the unknown parameter in the distribution h,(8), the domain of « is identical
to that of 8, and satisfies
1 if =0

P(e’a):{o it 6+ a 4

Equation (4) shows that h(#) is a discrete distribution and the probability of § = « is 1.
Let 6 = 6(X,Y, Z) be an estimation of P(Yp = 1) under H = i. Its risk function with
square loss is

R(0,i,6 =/ §(X,Y,Z) — P(Yo = 1))%dP(X,Y, Z,
Gid)= [, (06%,2) - P06 = 1) P(,Y,2,%)
= (8(X,Y,Z) — Fi(6))*dPy(X,Y, 2),

AxXYxZ

where P;(0) equals to P(Yy = 1) under the assumption (Hi) in (1), i = 1,2,3,4. For a
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fixed a the average risk of § is

4 . .
R(6) = ; /e R(6,%,6)ha(6, 1)d0

4 ) 4 '
- ; /9 R(6,4,8)ha(0)midd = 3 R(a, i, 8)m;

=1

4
=;LWMWXKE—WWQ%WMmm

4
- /z'l\.’x.'sz Z(é(X’Y)Z) _'Pi(a))zwidPa(X’Y’ Z)' (5)

=1

The Bayes estimation J, of P(Yy = 1) related to the prior distribution h,(8)w; is the
estimation which makes R(§) be minimum, so it is

4
0o = Z}’i(a)m. (6)

i=1

We know that §, does not depend on data, but on a. Because « is a parameter, it can be
estimated from data. Putting the estimation & of a into (6), we obtain

§= i Py(&)m;, (7)
i=1

and this is empirical Bayes estimation of P(Yp = 1). The average risk of empirical Bayes
estimation is

4
R(§) = / S @(X, Y, Z) - P(a))*mdPa(X, Y, 2). (8)
XXYXZ ;5
On the other hand, let § be another estimation of P(Yp = 1). Then its average risk is
-~ 4 -~
R(§) = / SG(X, Y, Z) — P(a))*mdPa(X, Y, 2).
XXYXZ 5

In Section 5, we perform experiments to compare 6 and & by comparing their average risks.
We have discussed the case that H is independent of 8. Now we consider the other
case, that is, A is not independent of 8

h(8,7) = h(8)m:(6).

Let § = 6(X,Y, Z) be an estimation of P(Yy = 1). Its average risk function with square
loss is
R@i5) = [ ((XY,2)- BO)4RAX,Y,2),
AxYxZ
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and so the average risk of 4 is
4
RO=Y [ [ 6(XY,2)- RO OmEIP(X,Y, 2)de.
3= YO JAXYXZ
As discussed above, let h(0) = ho(0). Then the Bayes estimation of P(Yp =1) is
4
0o = z -P'i(a)ﬂ-i(a%

i=1

and empirical Bayes estimation is
4
§ =3 P(&)m(a),
i=1

where & is the estimation of a.
As mentioned in Section 2, the four assumptions of replaceability are not testable from
the observed data. Now we give three kinds of choice of the prior distribution of H.
(Choice 1) H has union distribution, that is

mi=1/4, i=17234. (9)

(Choice 2) Firstly, compute every variance of P;(X,Y, Z) which is the estimation of
P;(a) under the assumption (Hi), i=1,2,3,4

@)= [ ARXY,2) - RPPXY,2), i=1234  (10)
XXYxZ
Then let 1
2
m@) = —2& 1934 (11)
4 1
=571 5%e)

Because o is unknown we can use its estimation & instead of « in (10).
(Choice 3) Let m; = 1 when the variance of P,(X,Y, Z) is the minimum one among
four variances, that is

ri(8) = 1, if 0f(&) = min{o?(a),j = 1,2,3,4}
7710, otherwise.

Thus the empirical Bayes estimation is

6 = Pi(&), where k= arg min{o?(&),i = 1,2,3,4}
k]

5. Experiment results
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We repeat sampling parameters of this model for 50 times and obtain data sets of
sample size 300 for every time.We can compute the ratios of average risks of empirical
Bayes estimation & to the other four estimations P;(X,Y, Z) under three choices of m; and
count how many ratios are smaller than 1, i = 1,2, 3,4. The following table lists the result
of the experiment, which reflects what percent the ratios are smaller than 1, where R(-)
is the average risk.

choice | R(9)/R(P(4)) | R(9)/R(Pa(&)) | R(0)/R(Ps(a)) | R(0)/R(Py(&))
1 62% 72% 86% 90%
2 70% 90% 90% 96%
3 66% 62% 78% 82%

We see that most of the ratios are smaller than 1, that is, the empirical Bayes estimation
is a better estimation.
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