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Abstract: The edge-tenacity of a graph G(V, E) is defined as min{ J—‘ﬂ“%_%%ﬂ : 8 C
E(G)},where 7(G~S) and w(G — S), respectively, denote the order of the largest compo-
nent and the number of the components of G — S. This is a better parameter to measure
the stability of a network G, as it takes into account both the quantity and the order
of components of the graph G — S. In a previous work, we established a necessary and
sufficient condition for a graph to be edge-tenacious. These results are applied to prove
that K-trees are strictly edge-tenacious. A number of results are given on the relation
of edge-tenacity and other parameters, such as the higher-order edge toughness and the
edge-toughness.
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1. Introduction

One way of measuring the stability of a network(computer, communi-cation, or trans-
portation) is through the cost with which one can disrupt the network. The edge-
connectivity gives the minimum cost to disrupt the network, but it does not take into
account what remains after disruption. One can say that the disruption is more successful
if the disconnected network contains more components and much more successful, if in
addition, the components are small. As nicely explained in [1], one can associate the cost
with the number of edges destroyed to get small components and associate the reward
with the number of components remaining after destruction. The edge-tenacity measure
is a compromise between the cost and the reward by minimizing the cost: reward ratio.
Thus, a network with a large edge tenacity performs better under external attack. In this
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sense, the following parameters are successively better for the measurement of stability.
Before defining these parameters, we recall some standard notation and terminology.

Let G be a simple graph with vertex set V(G) and edge set E(G), S a subset of E(G).
Denote by w(G — S) the number of (connected )components of G — S, by 7(G — S)the
order(number of vertices )of a largest component of G — S. A subset S C E(G) is an edge
cut-set of G ,if G — S is disconnected .

Edge-connectivity:

MG) = min{|S|: S C E(G) is an edge cut set of G};

Edge—toughnessm :

mn = min{m—lgg—)—_—l; S C E(G) is an edge cut — set of G};

Cth-order edge toughness!4:

15|

Edge-tenacity(!l:

|S| +7(G - 9)
w(G - S)

The score of S is define as sc(S) = [|S| + 7(G — S)]/{w(G — S)]. Formally, the edge-
tenacity of a graph G is defined as T'(G) = min{sc(S)}, where the minimum is taken over
all edge sets S of G. Let T*(G) = min{sc(S)}, where the minimum is taken over all edge-
sets of S # Fof G. A subset S # FE of E(G) is said to be a T*-set of G if T*(G) = s¢(9).
Note that if G is disconnected, then the set S may be empty. Throughout this paper,
we use w and 7 to represent w(G — S) and 7(G — S), respectively, when Gand Sare clear
from the context. We also use p and g to represent the number of vertices (order) and
the number of edges (size), respectively, of a graph. The edge-connectivity of G will be
denoted A = A(G), definitions and notation not otherwise defined here can be found in [6).

A graph G is called edge-tenacious if T'(G) = sc(E(G)). A graph is called strictly
edge-tenacious if E(G) is the unique set whose score equals 7"(G).

T'(G) = min{ : S C E(G)}

2. Relationships with 7.(G)(1<c¢<p-1)

In this section, we shall recall some known results that will be used to investigate some
connections between strictly tenacious graphs and 7.(G)(1 <c<p-1).

Lemma 121 Let G be a graph, S a T*-set of G. Assume that G — S has at most «'

nontrivial components. If
i g+1 1
e < —— —_—
pi—1 p
for any nontrivial component H; of G — S(p; = |V(H;)|,¢: = |E(H;)|,i = 1,2, ...,k k <

w'), then G is strictly edge-tenacious.
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Lemma 212 If S is a T*-set and C is a nontrivial component of G—S, then A\(C) > T*(G).

Lemma 3/ Let G be connected and S C E. Then sc(S) > 1 with equality if and only
ifGisatreeand S=E.

Lemma 44 Let G be a graph, s = 173—0’ where c is an integer satisfying 1 <c¢<p-1.
Then 1.(G) = s if and only if |[E(H)| < s(|[V(H)| — 1) for every subgraph of H of G.
From Lemmas 1-4, we have

Theorem 1 If G is a connected graph with ¢ < 4(p — 1)(p > 2) and 71 (G) = 517, then
G is strictly edge-tenacious.

Proof Let S be a T*-set of G. Assume that G — S has «’ nontrivial components
Hy,Hs, -+, Hy,t = ' (pi = |[V(H)l, ¢ = |E(H;)|,i = 1,2,---,t). It follows from Lem-
mas 2, 3 that AM(H;) > T*(G) > 1 and so p; > 3(¢ = 1,2,---,t). This implies that
p1+---+p > 3w’ Thus, w’ < £.

FromLemma4andq<4(p—1),weknow;iq;"—lS;E—l<9:—l+§,andthus

From Lemma 1, G is strictly edge-tenacious. 0O
From Lemma 4 and the proof of Theorem 1, we have the following results.

Theorem 2 If G is a connected graph with ¢ < 2p —4(p > 3) and 73(G) = %3, then G
is strictly edge-tenacious.

Theorem 3 If G is a connected graph with ¢ < §(p —3)(p > 9) and 73(G) = 553, then
G is strictly edge-tenacious.

3. K-trees

In this section, we study the edge-tenacity of k-trees. We prove that k-trees are strictly

edge-tenacious.

We now define a k-tree. Let k be a positive integer. Then k-trees are graphs defined
recursively as follows:

The smallest k-tree is the complete graph with k vertices ,and a k -tree withn + 1
vertices, where n > k is obtained by adding a new vertex adjacent to each of the k
arbitrarily selected but mutually adjacent vertices of a k-tree with n vertices.

We need the following results to determine the edge-tenacity of k-trees.

Lemma 5119 Let G be a k-tree of order p and H be its sub-graph with p’ vertices, where
p>p > k+ 1. Then |[E(H)| < p'k — k(k+1)/2 and |[E(H)| = p'k — k(k + 1)/2 if and
only if H is k-tree.

We shall also need the following results:

Lemma 607 If Gis k-tree with p vertices and q edges, then 71(G) = q/(p — 1).
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Lemma 712 Let G be a graph, and let S be a T*-set of G. Assume that G — S has at
most one nontrivial component. If 71(G) = q/(p — 1), then G is strictly edge-tenacious.

Theorem 4 If is G a k-tree, then G is strictly edge-tenacious.

Proof Let S be a T*-set ofG . Assume that G — S contains at least two nontrivial
components Hy and Hj of order p; and py , respectively, where, without loss of generality,
p2 21

In order to complete the proof we shall examine three different cases.

Casel po2>2p1 2 k+ 1.
Then, by Lemma 5,

|E(H1)| < pik — k(k +1)/2,|E(Hz)| < pk — k(k + 1)/2.
Thus,
IS| > pk —k(k +1)/2 — [mk — k(k +1)/2 + p2k — k(k +1)/2]
=(p—p—p2)k+k(k+1)/2
Since w < p—p1 —p2+ 2,7 2 pa, we have

—p2)k+k(k+1)/2+po

p—p1—p2+2 '

Let S’ C E(G),G — S’ be k-tree, and 7' = 7'(G - 5') = po, ' = (G- 8§)=p—py + 1.
Then

SC(S) Z (p_pl

|S’| = pk — k(k +1)/2 — [p2k — k(k +1)/2] = pk — ps.
Thus,
sc(§') = pk — pok +p2
p—p2+1
and so

sc(S) — sc(S') > (P—p1 —po)k+k(k+1)/2+p _ Pk—pk+ps
B p—pr—p2+2 p—pa+1

_ (=P +)[(p—p1 —p2)k+ k(k+1)/2+ p3] — (P~ p1 — P2 + 2)(pk + p2 — pok)
(p-p—p2+2)(p—p2+1) '

Now, it is easy to show that

(p—p2+1)[(p —p1 — p2)k + k(k +1)/2 + pa] — (p — p1 — p2 + 2)(pk — pak + p2)
=(p—p2)k(k —1)/2+k(k+1)/2+pa(p1 — 1) = k(p1 — 1) - k
= (p~p)k(k —1)/2+ k(k —1)/2 + (p2 — k)(p1 — 1) > 0.

s¢(S) > sc(S'), a contradiction.
Case 2 p; <k,ps <k. Then
|E(H)| < p1(py — 1)/2, |E(Hz)| < pa(p2 — 1)/2.
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Thus,
S| = [pk — k(k +1)/2] — [p1(p1 — 1)/2 + p2(p2 — 1)].

Thus,
sc(S) > kp — k(k+1)/2 — [pr(p1 ~ 1)/2 + pa(p2 — 1)/2] +p2

P—p1+2-—p2

Let §' C E(G) and G — S’ be the complete graph with py vertices.

Then
sc(S7) _Fp—k(k+1)/2 — pa(py — 1)/2 +P2,
p—p2t1l
5e(S) — se(s") >R RE+ D2 = Iy~ 1)/2 4 palpr = V)/A +p2
p—p+2-p2
_kp—k(k+1)/2 —pa(p2 —1)/2+p2

p—p2+1 ’

Now, it is easy to show that

(p—p2+1)[kp — k(k +1)/2 ~ p1(p1 — 1)/2 — pa(p2 — 1)/2 + pa] -
(p—pl +2 —pz)[kp— k(k + 1)/2—])2(])2 — 1)/2+p2]
= (p1 — 1pk ~ k(k +1)/2 — p2(p2 — 1)/2 + p2 ~ p1(p — p2 + 1) /2}
> (p1 — D[pk ~ k(k +1)/2 — pa(p2 — 1)/2 + p2 ~ pa(p — p2 + 1) /2]
= (p1 — 1)[pk/2 — k(k + 1)/2 + pk/2 — p2p/2 + p] > 0,

Thus, since p2 > p; and since p > k + 1,k > pa, sc(S) > sc(S'), a contradiction.

Case 3 p1 <k,p22k+ 1L
We have
|E(H:)| < p1(p1 —1)/2,|E(H2)| < p2k — k(k +1)/2.
IS' Zpk - k(k-l— 1)/2 - [pl(pl - 1)/2 +p2k — k(k—l— 1)/2] =pk —pzk —pl(pl — 1)/2.

Thus,
pk —pak —p1(py —1)/2 +pa

p—p1—p2+2 ’
Let 8’ C E(G) and G — 5’ be k-tree with ps vertices. Then
sc(S’) _ pk — k(k+1)/2 — [pak — k(k + 1)/2 + p2

p—p2+1

sc(S) >

_ Pk—pk +po
p—p2+1

It is easy to show that

(p — p2 + 1)[pk — pak — p1(p1 — 1)/2 + p2] — (p — p1 — p2 + 2)(pk — p2k + p2)
= (p ~ p2)(pr — 1)(2k — p1)/2 + (2p2 — p1)(p1 — 1)/2 > 0,
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since p; < k,p2 > p1,p = p2,p1 > 3. We get sc(S) > sc¢(S'), a contradication.
From three different cases, we have, G — § has at most one nontrivial component.
From Lemmas 6 and 7, we have, G is strictly edge-tenacious. 0O
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(1 XERIEPIRR, LT K% 116026; 2. KEEF LR TRER, L7 A% 116026)

#OE 1) R, RXE G(V,E) Mt Xy min{SHHED) . 5 ¢ B(G)}, R E,
7(G - S) fil w(G — S) HFFEF G — § HHRAN XM T ABAMEES LY. XE— EER
R RS HRFNEE, BAERMUERETE G- S MAXSELEI T EWNE. X
B TAES, fEEBE T HIHEE RN — RERE. FRXBERIENT K- P Hiay
PEBERE, FFAREN T HHIHEEE SEAR I 0 MBI B S 2 AR

XWE: BEE TRLIIEER K- & SEEOERE HREE.
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