Browder's Theorem and Weyl's Theorem *

CAO Xiao-hong¹, GUO Mao-zheng², MENG Bin²

- (1. College of Math. & Info. Sci., Shaanxi Normal University, Xi'an 710062, China;
- 2. School of Math. Sci., Peking University, Beijing 100871, China)

Abstract: In this paper, by defining two new spectral sets, we give the necessary and sufficient conditions for Browder's theorem and Weyl's theorem for bounded linear operator T and f(T), where $f \in \mathcal{H}(\sigma(T))$ and $\mathcal{H}(\sigma(T))$ denotes the set of all analytic functions on an open neighborhood of $\sigma(T)$.

Key words: Browder's theorem; Weyl's theorem; spectrum.

Classification: AMS(2000) 47A10, 47A53, 47A55/CLC number: O177.2

Document code: A **Article ID**: 1000-341X(2004)04-0511-06

1. Introduction

H.Weyl^[11] examined the spectra of all compact perturbations T+K of a hermitian operator T and discovered that $\lambda \in \sigma(T+K)$ for every compact operator K if and only if λ is not an isolated eigenvalue of finite multiplicity in $\sigma(T)$. Today this result is known as Weyl's theorem, and it has been extended from hermitian operators to hyponormal operators and to Toeplitz operators by L.Coburn^[3], to several classes of operators including seminormal operators by S.Berberian^{[1],[2]}, and to a few classes of Banach space operators^{[7],[8]}. Similar to the Weyl's theorem, there is a-Browder theorem and a-Weyl's theorem^{[4],[9]}. The aim of this paper is to give the necessary and sufficient conditions for Browder's theorem and Weyl's theorem.

Throughout this paper, X denotes a complex infinite Banach space, and B(X) and K(X) denote respectively the algebra of bounded linear operators and the ideal of compact operators on X. For $T \in B(X)$, N(T), R(T) respectively denote the null and the range space. Let $\sigma(T)$ be the spectrum of T and $\rho(T) = \mathbb{C} \setminus \sigma(T)$. It is well known that the following sets form semi-groups of semi-Fredholm operators on X:

$$\Phi_+(X) = \{ T \in B(X) : R(T) \text{ is closed and } \dim N(T) < \infty \}$$

and

$$\Phi_-(X) = \{T \in B(X) : R(T) \text{ is closed and } \dim X/R(T) < \infty\}.$$

^{*}Received date: 2003-01-13

If $T \in \Phi_+(X) \cap \Phi_-(X)$, we call T is a Fredholm operator. Let $\Phi(X) = \Phi_+(X) \cap \Phi_-(X)$ be the set of all Fredholm operators on X. If T is semi-Fredholm operator and $n(T) = \dim N(T)$ and $d(T) = \dim X/R(T)$, then we define the index of T by $\operatorname{ind}(T) = n(T) - d(T)$. We also consider the sets: $\Phi_0(X) = \{T \in \Phi(X) : \operatorname{ind}(T) = 0\}$ (Weyl operators). An operator T is called Browder operator if T is Fredholm operator "of finite ascent and descent": equivalently ([5], Theorem 7.9.3) if T is Fredholm operator and $T - \lambda I$ is invertible for sufficiently small $\lambda \neq 0$ in \mathbb{C} .

The following definitions are well known: the essential spectrum of T is $\sigma_e(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not in } \Phi(X)\}$, the Weyl spectrum of T is $\sigma_w(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not in } \Phi_0(X)\}$ and the Browder spectrum of T is $\sigma_b(T) = \bigcap \{\sigma(T+K) : TK = KT, K \in K(X)\} = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder operator } \}$. Let $P_{00}(T) = \sigma(T) \setminus \sigma_b(T)$, $\rho_w(T) = \mathbb{C} \setminus \sigma_w(T)$, $\rho_b(T) = \mathbb{C} \setminus \sigma_b(T)$ and Let $\pi_{00}(T)$ be the set of all $\lambda \in \mathbb{C}$ such that λ is an isolated point of $\sigma(T)$ and $0 < n(\lambda I - T) < \infty$. We write $isoK(\partial K)$ for the isolated (boundary) points set of $K \subseteq \mathbb{C}$.

We say that T obeys Weyl's theorem if $\sigma(T)\backslash \sigma_w(T) = \pi_{00}(T)$, and T obeys Browder's theorem if $\sigma(T)\backslash \sigma_w(T) = P_{00}(T)$ or $\sigma_w(T) = \sigma_b(T)$.

Clearly, if T obeys Weyl's theorem, then it obeys Browder's theorem. $T \in B(X)$ is called isoloid if for any $\lambda \in \mathrm{iso}\sigma(T)$, then $\dim N(\lambda I - T) > 0$.

Let $\mathcal{H}(T)$ ($\mathcal{H}(\sigma(T))$) denote the set of all analytic functions in some neighbourhood (region) of $\sigma(T)$. Clearly, $\mathcal{H}(\sigma(T)) \subseteq \mathcal{H}(T)$.

2. Browder's theorem and Weyl's theorem I

Let

$$\rho_1(T) = \{\lambda \in \mathbf{C} : T - \lambda I \text{ is Weyl operator and } N(T - \lambda I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n]\}$$

and $\sigma_1(T) = \mathbf{C} \setminus \sigma_1(T)$.

Clearly, $\rho(T) \subseteq \rho_1(T) \subseteq \rho_w(T)$, $\sigma_w(T) \subseteq \sigma_1(T) \subseteq \sigma(T)$ and iso $\sigma(T) \subseteq \sigma_1(T)$. In fact, if $\lambda_0 \in \text{iso}\sigma(T)$ but $\lambda_0 \in \rho_1(T)$, then $T - \lambda_0 I$ is Browder operator, so by Lemma 3.4 of [10], $n(T - \lambda_0 I) = \dim[N(T - \lambda_0 I) \cap \bigcap_{n=1}^{\infty} R[(T - \lambda_0 I)^n]] = 0$, thus $T - \lambda_0 I$ is invertible. It contradicts the fact that $\lambda_0 \in \sigma(T)$.

Theorem 1 Browder's theorem holds for T if and only if $\sigma(T) = \sigma_1(T)$.

Proof Suppose that Browder's theorem holds for T. Since $\sigma(T) \setminus \sigma_1(T) \subseteq \sigma(T) \setminus \sigma_w(T) = P_{00}(T) \subseteq \sigma_1(T)$, it follows that $\sigma(T) \setminus \sigma_1(T) = \emptyset$, which means $\sigma(T) = \sigma_1(T)$.

For the inverse, suppose that $\sigma(T) = \sigma_1(T)$. For any $\lambda_0 \in \sigma(T) \setminus \sigma_w(T)$, $T - \lambda_0 I$ is Weyl. By the perturbation theorem of Fredholm operator, there exists $\varepsilon > 0$ such that $T - \lambda I$ is Fredholm operator with $ind(T - \lambda I) = ind(T - \lambda_0 I)$ and $N(T - \lambda I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n]$ if $0 < |\lambda - \lambda_0| < \varepsilon$, then $\lambda \in \rho_1(T)$ for $0 < |\lambda - \lambda_0| < \varepsilon$. Thus $\lambda \in \rho_1(T) = \rho(T)$ if $0 < |\lambda - \lambda_0| < \varepsilon$, which means that λ_0 is an isolated point of $\sigma(T)$. Then we get that $\lambda_0 \in P_{00}(T)$, so Browder's theorem holds for T. The completes the proof.

Corollary 1 If Browder's theorem holds for $T \in B(X)$ and $S \in B(Y)$ and $f \in calH(T)$, then

Browder's theorem holds for
$$f(T) \iff \sigma_1(f(T)) = f(\sigma_1(T))$$

and

Browder's theorem holds for $T \oplus S \iff \sigma_1(T) \cup \sigma_1(S) = \sigma_1(T \oplus S)$.

So if T obeys Browder's theorem and $f \in (\mathcal{T})$ is injective, then Browder's theorem holds for f(T).

Proof By Theorem 1, Browder's theorem holds for $f(T) \iff \sigma_1(f(T)) = \sigma(f(T)) = f(\sigma(T)) = f(\sigma_1(T))$. And Browder's theorem holds for $T \oplus S \iff \sigma_1(T \oplus S) = \sigma(T \oplus S) = \sigma(T) \cup \sigma(S) = \sigma_1(T) \cup \sigma_1(S)$.

Theorem 2 If T obeys Weyl's theorem and T is isoloid, then the following statements are equivalent:

- (1) $\sigma_1(f(T)) = f(\sigma_1(T))$ for every $f \in \mathcal{H}(\sigma(T))$;
- (2) Weyl's theorem holds for f(T) for every $f \in \mathcal{H}(\sigma(T))$.

Proof Weyl's theorem induces Browder's theorem, so by Corollary 1, we have that $(2) \Longrightarrow (1)$.

(1) \Longrightarrow (2). By Corollary 1, for any $f \in \mathcal{H}(\sigma(T))$, Browder's theorem holds for f(T), that is $\sigma(f(T)) \setminus \sigma_w(f(T)) \subseteq \pi_{00}(f(T))$. In the following we will prove $\pi_{00}(f(T)) \subseteq \sigma(f(T)) \setminus \sigma_w(f(T))$. Let $\mu_o \in \pi_{00}(f(T))$, suppose

$$f(T) - \mu_0 I = a(T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_n I)g(T),$$

where $a, \lambda_1, \lambda_2, \dots, \lambda_n \in \sigma(T)$ and g(T) if invertible. Since μ_0 is the isolated point in $\sigma(f(T))$, we know $\lambda_i \in \text{iso}\sigma(T)$. With $N(T-\lambda_i I) \subseteq N(f(T)-\mu_0 I)$, then $n(T-\lambda_i I) < \infty$. The fact that T is isoloid asserts that $\lambda_i \in \pi_{00}(T)$ for all λ_i . Weyl's theorem holds for T, then $T - \lambda_i I$ is Weyl operator, thus $f(T) - \mu_0 I$ is Weyl operator, which means that $\mu_0 \in \sigma(f(T)) \setminus \sigma_w(f(T))$. Now we get that Weyl's theorem holds for f(T). This completes the proof.

3. Browder's theorem and Weyl's theorem II

Suppose $\rho_3(T) = \{\lambda \in \mathbf{C}, n(T - \lambda I) < \infty \text{ and there exists } \varepsilon > 0 \text{ such that } T - \mu I \text{ is Weyl operator and } N(T - \mu I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \mu I)^n] \text{ for } 0 < |\mu - \lambda| < \varepsilon\}.$ Let $\sigma_3(T) = \mathbf{C} \setminus \rho_3(T)$. Then $\rho(T) \subseteq \rho_b(T) \subseteq \rho_w(T) \subseteq \rho_3(T)$.

Theorem 3 T is isoloid and Weyl's theorem holds for T if and only if $\sigma_b(T) = \sigma_3(T)$.

Proof Suppose that T is isoloid and Weyl's theorem holds for T. We only need to prove $\sigma_b(T) \subseteq \sigma_3(T)$.

Suppose $\lambda_0 \in \sigma_b(T)$ but λ_0 is not in $\sigma_3(T)$, then $n(T - \lambda_0 I) < \infty$ and there exists $\varepsilon > 0$ such that $T - \mu I$ is Weyl operator and $N(T - \mu I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \mu I)^n]$ if $0 < \infty$

 $|\mu - \lambda_0| < \varepsilon$. Since Weyl's theorem holds for T, it follows that $T - \mu I$ is Browder operator if $0 < |\mu - \lambda_0| < \varepsilon$. Then

$$N(T - \mu I) = N(T - \mu I) \cap \bigcap_{n=1}^{\infty} R[(T - \mu I)^n] = \{0\}.$$

Thus $T - \mu I$ is invertible if $0 < |\mu - \lambda_0| < \varepsilon$, which means that $\lambda_0 \in \text{iso}\sigma(T)$. T is isoloid implies $0 < n(T - \lambda_0 I) < \infty$. We now get that $\lambda_0 \in \pi_{00}(T) = \sigma(T) \setminus \sigma_w(T)$, that is $T - \lambda_0 I$ is Browder operator. It is a contradiction. Then we have $\sigma_3(T) = \sigma_b(T)$.

Conversely, suppose that $\sigma_b(T) = \sigma_3(T)$. By definition of $\rho_3(T)$, we know that $[\sigma(T) \setminus \sigma_w(T)] \cup \pi_{00}(T) \subseteq \rho_3(T) = \rho_b(T)$, so $\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T)$, which means that Weyl's theorem holds for T. In the following, we will prove that T is isoloid. Let $\lambda_0 \in \text{iso}\sigma(T)$, if $N(T - \lambda_0 I) = \{0\}$, by definition of $\rho_3(T)$, $\lambda_0 \in \rho_3(T) = \rho_b(T)$. Then $T - \lambda_0 I$ is invertible, which is in contradiction to the fact that $\lambda_0 \in \sigma(T)$. This completes the proof.

Corollary 2 Suppose $T \in B(X)$ and $S \in B(Y)$ are all isoloid operators. If Weyl's theorem holds for T and S and if $f \in \mathcal{H}(T)$, then

Weyl's theorem holds for
$$f(T) \iff \sigma_3(f(T)) = f(\sigma_3(T)) \iff f(\sigma_3(T)) \subseteq \sigma_3(f(T))$$

and

Weyl's theorem holds for
$$T \oplus S \iff \sigma_3(T) \cup \sigma_3(S) = \sigma_3(T \oplus S)$$
.

Proof If T is an isoloid operator, then for any $f \in \mathcal{H}(T)$, f(T) is an isoloid operator. In fact, if $\mu \in \mathrm{iso}\sigma(f(T))$ and suppose $\mu = f(\lambda)$, then $\lambda \in \mathrm{iso}\sigma(T)$. Since T is isoloid, it follows that $n(T - \lambda I) > 0$. By $N(T - \lambda I) \subseteq N(f(T) - \mu I)$, we get $n(f(T) - \mu I) > 0$, which means that f(T) is an isoloid operator. Using the same way, we can prove that: if T and S are all isoloid operators, then $T \oplus S$ is an isoloid operator.

By contrast ([5], Theorem 9.8.2), the spectral mapping theorem holds for the Browder spectrum, and the Browder spectrum of a direct sum is the union of the Browder spectrum of the components.

So

Weyl's theorem holds for
$$f(T)$$

 $\iff \sigma_3(f(T)) = \sigma_b(f(T)) = f(\sigma_b(T)) = f(\sigma_3(T))$
 $\implies f(\sigma_3(T)) \subseteq \sigma_3(f(T)).$

If $f(\sigma_3(T)) \subseteq \sigma_3(f(T))$, then $\sigma_b(f(T)) = f(\sigma_b(T)) = f(\sigma_3(T)) \subseteq \sigma_3(f(T))$, thus $\sigma_b(f(T)) = \sigma_3(f(T))$, which means that Weyl's theorem holds for f(T). Also

Weyl's theorem holds for $T \oplus S \iff \sigma_3(T \oplus S) = \sigma_b(T \oplus S) = \sigma_b(T) \cup \sigma_b(S) = \sigma_3(T) \cup \sigma_3(S)$.

Theorem 4 If Browder's theorem holds for T, then the following statements equivalent:

- (1) $f(\sigma_3(T)) \subseteq \sigma_3(f(T))$ for every $f \in \mathcal{H}(\sigma(T))$;
- (2) Browder's theorem holds for f(T) for every $f \in \mathcal{H}(\sigma(T))$.

Proof (1) \Longrightarrow (2). Let $\mu_0 \in \sigma(f(T)) \setminus \sigma_w(f(T))$, that is $f(T) - \mu_0 I$ is a Weyl operator. Suppose

$$f(T) - \mu_0 I = a(T - \lambda_1 I)(T - \lambda_2 I) \cdot \cdot \cdot (T - \lambda_n I)g(T),$$

where $a, \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbf{C}$ and g(T) is invertible. Then $T - \lambda_i I$ is Fredholm operator for all λ_i . Since μ_0 is not in $\sigma_3(f(T))$, it follows that μ_0 is not in $f(\sigma_3(T))$, that is $\lambda_i \in \rho_3(T)$. By perturbation theorem of Fredholm operator, for any λ_i , there exists $\varepsilon_i > 0$ such that $\operatorname{ind}(T - \lambda_i I) = \operatorname{ind}(T - \lambda_i' I)$ if $0 < |\lambda_i' - \lambda_i| < \varepsilon_i$. Let ε_i is small enough, by $\lambda_i \in \rho_3(T)$, then $\operatorname{ind}(T - \lambda_i I) = \operatorname{ind}(T - \lambda_i' I) = 0$, which means that $T - \lambda_i I$ is Weyl. Since Browder's theorem holds for T, it follows that $T - \lambda_i I$ is Browder. Then $f(T) - \mu_0 I$ is a Browder's operator.

(2) \Longrightarrow (1). Suppose $\mu_0 \in f(\sigma_3(T))$ and μ_0 is not in $\sigma_3(f(T))$. Let $\mu_0 = f(\lambda_1)$, where $\lambda_1 \in \sigma_3(T)$. Suppose

$$f(T) - \mu_0 I = a(T - \lambda_1 I)^{n_1} (T - \lambda_2 I)^{n_2} \cdots (T - \lambda_m I)^{n_m} g(T),$$

where $a, \lambda_1, \lambda_2, \dots, \lambda_m \in \mathbb{C}$, $\lambda_i \neq \lambda_j$ and g(T) is invertible. Use ([6], Satz 80.1) to drive

$$N(f(T) - \mu_0 I) = N(T - \lambda_1 I)^{n_1} \oplus N(T - \lambda_2 I)^{n_2} \oplus \cdots \oplus N(T - \lambda_m I)^{n_m},$$

then $n(T - \lambda_1 I) < \infty$. In the following we will prove that $\lambda_1 \in \rho_3(T)$. By $\mu_0 \in \rho_3(f(T))$, there exists $\delta > 0$ such that $f(T) - \mu I$ is Weyl and $N(f(T) - \mu I) \subseteq \bigcap_{n=1}^{\infty} R[(f(T) - \mu I)^n]$ if $0 < |\mu - \mu_0| < \delta$. Since f is analytic, for λ_1 , there exists $\varepsilon > 0$ such that $0 < |f(\lambda'_1) - f(\lambda)| = |f(\lambda'_1) - \mu_0| < \delta$ if $0 < |\lambda'_1 - \lambda_1| < \varepsilon$. Then $f(T) - f(\lambda'_1)I$ is Weyl and $N[f(T) - f(\lambda'_1)I] \subseteq \bigcap_{n=1}^{\infty} R[(f(T) - f(\lambda'_1)I)^n]$. Let

$$f(T) - f(\lambda_1')I = b(T - \lambda_1'I)^{t_1}(T - \lambda_2'I)^{t_2} \cdots (t - \lambda_k'I)^{t_k}h(T),$$

where h(T) is invertible. Since Browder's theorem holds for f(T), we get that $f(T)-f(\lambda_1')I$ is a Browder operator. Then $f(T)-f(\lambda_1')I$ is invertible ([T],Lemma 3.4). Thus $T-\lambda_1'I$ is invertible. Now we have that for λ_1 , there exist $\varepsilon > 0$ such that $T - \lambda_1'I$ is invertible if $0 < |\lambda_1' - \lambda_1| < \varepsilon$, so $\lambda_1 \in \rho_3(T)$. It is a contradiction.

Corollary 3 If T is isoloid and Weyl's theorem holds for T, then the following statements are equivalent:

- (1) $f(\sigma_3(T)) = \sigma_3(f(T))$ for every $f \in \mathcal{H}(\sigma(T))$;
- (2) Browder's theorem holds for f(T) for every $f \in \mathcal{H}(\sigma(T))$;
- (3) Weyl's theorem holds for f(T) for every $f \in \mathcal{H}(\sigma(T))$.

Proof $(1) \iff (3)$ See Corollary 2.

- $(1) \Longrightarrow (2)$ See Theorem 4.
- (2) \Longrightarrow (1). We only need to prove that $\sigma_3(f(T)) \subseteq f(\sigma_3(T))$. Let $\mu_0 \in \sigma_3(f(T))$ and μ_0 is not in $f(\sigma_3(T))$. Suppose

$$f(T) - \mu_0 I = a(T - \lambda_1 I)^{n_1} (T - \lambda_2 I)^{n_2} \cdots (T - \lambda_m I)^{n_m} g(T),$$

where $a, \lambda_1, \lambda_2, \dots, \lambda_m \in \mathbb{C}$, $\lambda_i \neq \lambda_j$ and g(T) is invertible. Since

$$N(f(T) - \mu_0 I) = N(T - \lambda_1 I)^{n_1} \oplus N(T - \lambda_2 I)^{n_2} \oplus \cdots \oplus N(T - \lambda_m I)^{n_m},$$

it follows that $n(f(T) - \mu_0 I) < \infty$. For λ_i , there exists $\varepsilon_i > 0$ such that $T - \lambda_i' I$ is Weyl and $N(T - \lambda_i' I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \lambda_i' I)^n]$. Since Browder's theorem holds for T, we know that $T - \lambda_i' I$ is invertible. Then $\lambda_i \in \text{iso}\sigma(T)$. Using the fact that T is isoloid, it follows that $0 < n(T - \lambda_i I) < \infty$. Then $\lambda_i \in \pi_{00}(T)$. The fact that Weyl's theorem holds for T induces that $T - \lambda_i I$ is Browder, so $f(T) - \mu_0 I$ is Browder, therefore $\mu_0 \in \rho_3(f(T))$. It is in contradiction to the fact that $\mu_0 \in \sigma_3(f(T))$. This completes the proof.

Remark From the proof of Corollary 3, we find that: if T is isoloid and Browder's theorem holds for T, then (1) and (2) are equivalent.

References:

- [1] BERBERIAN S K. An extension of Weyl's theorem to a class of not necessarily normal operators [J]. Michigan Math. J., 1969, 16: 273-279.
- [2] BERBERIAN S K. The Weyl spectrum of an operator [J]. Indiana Univ. Math. J., 1970, 20: 529-544.
- [3] COBURN L A. Weyl's theorem for nonnormal operators [J]. Michigan Math. J., 1966, 285–288.
- [4] DJORDJEVIĆ S V, DJORDJEVIĆ D S. Weyl's theorems:continuity of the spectrum and quasihyponormal operators [J]. Acta Sci. Math., (Szeged), 1998, 64: 259–269.
- [5] HARTE R E. Invertibility and Singularity for Bounded Linear Operators [M]. Dekker, New York, 1988. MR 89d: 47001.
- [6] HEUSER H. Funktionalanalysis [M]. 2nd. ed. Stuttgart, 1986.
- [7] ISTRATESCU V I. On Weyl's spectrum of an operator I [J]. Rev. Ronmaine Math. Pure Appl., 1972, 17: 1049–1059.
- [8] OBERAI K K. On the Weyl spectrum [J]. Illinois J. Math., 1974, 18: 208-212.
- [9] RAKOČEVIČ V. Operators obeying a-Weyl's theorem [J]. Rev. Roumaine Math. Pures Appl., 1989, 34(10): 915–919.
- [10] TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators [J]. Math. Ann., 1966, 163: 18–49.
- [11] WEYL H. Über beschränkte quadratische Formen, deren Differenz vollstetig ist [J]. Rend. Circ. Mat. Palermo, 1909, 27: 373–392.

Browder 定理和 Weyl 定理

曹小红1,郭懋正2,孟彬2

(1. 陕西师范大学数学与信息科学学院,陕西 西安 710062; 2. 北京大学数学科学学院,北京 100871)

摘 要: 本文通过定义两个新的谱集,给出了 Browder 定理和 Weyl 定理对算子 T 以及 f(T) 成立的充要条件,其中 $f \in \mathcal{H}(\sigma(T))$, $\mathcal{H}(\sigma(T))$ 表示在谱集 $\sigma(T)$ 的开邻域上解析的函数的全体.

关键词: Browder 定理; Weyl 定理; 谱.