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Abstract: In this paper, by defining two new spectral sets, we give the necessary
and sufficient conditions for Browder’s theorem and Weyl’s theorem for bounded linear
operator T' and f(T'), where f € H(o(T)) and H(co(T)) denotes the set of all analytic
functions on an open neighborhood of o(T).
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1. Introduction

H.Weyl"1] examined the spectra of all compact perturbations 7+ K of a hermitian
operator T and discovered that A € o(T + K) for every compact operator K if and only
if A is not an isolated eigenvalue of finite multiplicity in o(7"). Today this result is known
as Weyl’s theorem, and it has been extended from hermitian operators to hyponormal
operators and to Toeplitz operators by L.CoburnPl, to several classes of operators in-
cluding seminormal operators by S.Berberianl!1? and to a few classes of Banach space
operatorsm’[s]. Similar to the Weyl’s theorem, there is a-Browder theorem and a-Weyl’s
theorem[4[%. The aim of this paper is to give the necessary and sufficient conditions for
Browder’s theorem and Weyl’s theorem.

Throughout this paper, X denotes a complex infinite Banach space, and B(X) and
K (X) denote respectively the algebra of bounded linear operators and the ideal of compact
operators on X. For T € B(X), N(T), R(T) respectively denote the null and the range
space. Let o(T) be the spectrum of T and p(T) = C\o(T). It is well known that the
following sets form semi-groups of semi-Fredholm operators on X:

®,.(X)={T € B(X): R(T) is closed and dim N(T) < oo}

d
an d_(X)={T € B(X): R(T) is closed and dim X/R(T) < oo}.
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T € d (X)N®_(X), we call T is a Fredholm operator. Let ®(X)=®,(X)N&_(X)
be the set of all Fredholm operators on X. If T is semi-Fredholm operator and n(T) =
dim N(T) and d(T) = dim X/R(T), then we define the index of T' by ind(T) = n(T) —
d(T). We also consider the sets: ®¢(X) = {T' € ®(X) : ind(T) = 0} (Weyl operators).
An operator T is called Browder operator if T' is Fredholm operator “of finite ascent
and descent”: equivalently ([5], Theorem 7.9.3) if T is Fredholm operator and T — Al is
invertible for sufficiently small A # 0 in C.

The following definitions are well known: the essential spectrum of T is o.(T) = {\ €
C,T — Al is not in ®(X)}, the Weyl spectrum of T is 0,(T) = { A € C : T — X[
is not in ®o(X) } and the Browder spectrum of T is op(T) = ({o(T + K) : TK =
KT, K € K(X)}={X € C: T — Al is not Browder operator }. Let Py(T) = o(T)\op(T),
puw(T) = C\ow(T), pp(T) = C\op(T") and Let moo(T) be the set of all A € C such that A
is an isolated point of ¢(T") and 0 < n(AI ~T') < co. We write isoK (0K) for the isolated
(boundary) points set of K C C.

We say that T obeys Weyl’s theorem if o(T")\oy (T) = mo(T), and T obeys Browder’s
theorem if o(T)\ow(T') = Poo(T') or 0, (T) = op(T).

Clearly, if T obeys Weyl’s theorem, then it obeys Browder’s theorem. T € B(X) is
called isoloid if for any A € isoo(T), then dim N(A\I —T) > 0.

Let H(T) (H(o(T))) denote the set of all analytic functions in some neighbourhood (
region ) of o(T'). Clearly, H(o(T)) C H(T).

2. Browder’s theorem and Weyl’s theorem I

Let

oo
p(T) ={) € C: T — X\ is Weyl operator and N(T — M) C ﬂ R{(T — X))}
n=1

and 01(T) = C\o1(T).

Clearly, p(T) C p1(T) C pu(T), 0w(T) C 01(T) C o(T) and isoa(T) C oy (T). In fact,
if Ag € isoo(T') but Ay € py(T), then T — Aol is Browder operator, so by Lemma 3.4 of
[10], n(T — XoI) = dim[N(T — M) N F)o R[(T — AI)™)] = 0, thus T — Ao[ is invertible. It
contradicts the fact that Ay € o(T). "

Theorem 1 Browder’s theorem holds for T if and only if o(T) = o(T).

Proof Suppose that Browder’s theorem holds for 7. Since o(T)\o1(T) C o(T)\ow(T) =
Poo(T) € 01(T), it follows that o(T)\o1(T) = @, which means o(T) = oy(T).
For the inverse, suppose that o(T) = o1(T). Forany X\g € o(T)V\ow(T), T—XolI is Weyl.
By the perturbation theorem of Fredholm operator, there exists £ > 0 such that T — AJ is
Fredholm operator with ind(T — A1) = ind(T — XoI) and N(T — AI) C ﬁ R[(T — A"
=1

X n
if 0 < [A—=Ag| <&, then A € p1(T) for 0 < |\ — Xg| < e. Thus ) € p1(T) = p(T) if
0 < [A = Ag| < &, which means that Ay is an isolated point of o(T). Then we get that
Ao € Poo(T), so Browder’s theorem holds for 7. The completes the proof.
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Corollary 1 If Browder’s theorem holds forT € B(X) and S € B(Y) and f € calH(T),
then

Browder’s theorem holds for f(T) <= oy (f(T)) = f(o1(T))

and
Browder’s theorem holds for T @ S <= 01(T) U0,(S) = 01 (T & S).

So if T' obeys Browder’s theorem and f € (T) is injective, then Browder’s theorem holds

for f(T).

Proof By Theorem 1, Browder’s theorem holds for f(T) <= o1(f(T)) = o(f(T)) =
fe(T)) = f(o1(T)). And Browder’s theorem holds for T® S <= 0, (T®S) = o(T®S) =
a(T)Ua(S) = a1 (T)Ua(S5).

Theorem 2 If T obeys Weyl’s theorem and T is isoloid, then the following statements
are equivalent:

(1) o1(f(T)) = fo1(T)) for every | € H(o(T));
(2) Weyl’s theorem holds for f(T') for every f € H(o(T)).

Proof Weyl’s theorem induces Browder’s theorem, so by Corollary 1, we have that

(2) = (1).
(1) = (2). By Corollary 1, for any f € H(o(T)), Browder’s theorem holds for
f(r), that is o(f(T))\ow(f(T)) C meo(f(T)). In the following we will prove mo(f(7T")) C

o(f(T))\ow(f(T )) Let p1, € moo(f(T)), suppose
F(T) = pol = a(T — M I)(T = o) -+ (T — X\ I)g(T),

where a, A1, A9, -+, Ay, € o(T) and ¢(T') if invertible. Since uq is the isolated point in
a(f(T)), we konw ), € isoo(T'). With N(T— A1) C N(f(T)—pol), then n(T — A1) < co.
The fact that T is isoloid asserts that \; € mgo(T) for all A;. Weyl’s theorem holds for
T, then T — A1 is Weyl operator, thus f(T) — pol is Weyl operator, which means that
o € o(f(T)\ow(f(T)). Now we get that Weyl’s theorem holds for f(T'). This completes

the proof.
3. Browder’s theorem and Weyl’s theorem II

Suppose p3(T) = {A € C, n(T M) < oo and there exists € > 0 such that T'—pul is Weyl
operator and N(T — ul) C ﬂ R{(T — pI)™] for 0 < |p— A| < €}. Let a3(T) = C\ps(T).
Then p(T) € po(T) € pulT) C p3(T).
Theorem 3 T is isoloid and Weyl’s theorem holds for T' if and only if 0,(T) = o3(T).

Proof Suppose that T is isoloid and Weyl’s theoremn holds for T'. We only need to prove

ap(T) C o3(T). .
Suppose A € 0(T) but Xg is not in o3(7T), then n(T — Aol ) < oo and there exists

¢ > 0 such that T — ul is Weyl operator and N(T — ul) C ﬂ R[(T — pI)" if 0 <
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|t — Xo| < e. Since Weyl’s theorem holds for T', it follows that T'— w1 is Browder operator
if 0 < | — Ao| < e. Then

N(T = ul) = N(T = u) 0 (] BT - uI)") = {0).

n=1

Thus T — pI is invertible if 0 < | — Ao| < €, which means that Ay € isoo(T). T is isoloid
implies 0 < n(T — XoI) < co. We now get that Ay € mpo(T) = o(T)\ow(T), that is T — Agl
is Browder operator. It is a contradiction. Then we have o3(T) = 0(T).

Conversely, suppose that o,(T) = o3(7). By definition of p3(T), we know that
[o(TV\ow(T)] U mee(T) € p3(T) = po(T), s0 o(T)\ow(T) = moo(T), which means that
Weyl’s theorem holds for 7. In the following, we will prove that T is isoloid. Let
X € isoo(T), if N(T — MI) = {0}, by definition of p3(T"), Ag € p3(T) = pp(T). Then
T — Aol is invertible, which is in contradiction to the fact that Ao € o(T"). This completes
the proof.

Corollary 2 Suppose T € B(X) and § € B(Y) are all isoloid operators. If Weyl’s
theorem holds for T and S and if f € H(T), then

Weyl's theorem holds for f(T) <= o3(f(T)) = f(o3(T)) <= f(o3(T)) C o3(f(T))

and
Weyl's theorem holds for T & § <= a3(T) Uo3(S) = 03(T & S).

Proof If T is an isoloid operator, then for any f € H(T), f(T) is an isoloid operator.
In fact, if g € isoo(f(T)) and suppose p = f(A), then A € iso0(T'). Since T is isoloid, it
follows that n(T' — M) > 0. By N(T — AI) C N(f(T) — pl), we get n(f(T) — plI) > 0,
which means that f(7") is an isoloid operator. Using the same way, we can prove that: if
T and S are all isoloid operators , then 7' @ S is an isoloid operator.

By contrast ([5],Theorem 9.8.2), the spectral mapping theorem holds for the Browder
spectrum, and the Browder spectrum of a direct sum is the union of the Browder spectrum
of the components.

So

Weyl's theorem holds for f(T)
= 03(f(T)) = 0u(f(T)) = f(ow(T)) = f(o3(T))
= fla3(T)) C o3(£(T)).

If f(03(T)) S a3(f(T)), then oy(f(T)) = f(ow(T)) = f(o3(T)) C a3(f(T)), thus

ao(f(T)) = o3(f(T)), which means that Weyl’s theorem holds for f(7).
Also

Weyl's theorem holds for T®S <= o3(T®S) = op(T®S) = 0p(T)U0s(S) = a3(T)Uo3(S).

Theorem 4 If Browder’s theorem holds for T, then the following statements equivalent:
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() flo3(T)) € a3(f(T)) for every f € H(o(T));
(2) Browder’s theorem holds for f(T) for every f € H(o(T)).

Proof (1) == (2). Let po € o(f(T))\ow(f(T)), that is f(T) — ol is a Weyl operator.
Suppose
f(T) - ﬂOI = CL(T - /\II)(T - /\21) T (T - )‘n])(](T)v

where a, A, Ao, -+, Ay € C and g(7") is invertible. Then T — \,I is Fredholin operator for
all A;. Since p1g is not in o3(f(T)), it follows that yg is not in f(o3(T)), that is A; € p3(T).
By perturbation theorem of Fredholm operator, for any A, there exists g; > 0 such that
ind(T — M\I) = ind(T — A1) if 0 < [N, — Ai| < e;. Let g, is small enough, by X; € p3(7T),
then ind(T — A7) = ind(7'— X.I) = 0, which means that 7'~ X, I is Weyl. Since Browder’s
theorem holds for T, it follows that 7" — A;1 is Browder. Then f(T) — pol is a Browder’s
operator.

(2) == (1). Suppose pg € f(o3(T)) and pug is not in o3(f(T)). Let pg = f(\1), where
A1 € o3(T). Suppose

I(T) = pol = a(T — )" (T = X2D)™ -+ (T = Ap 1) g(T),
where a, A, Ay, -+, A € C, Ay # Aj and g(7) is invertible. Use ([6], Satz 80.1) to drive
N(f(T) = pol) = N(T — M D)™ & N(T ~ \I)™ @ - & N(T — A1)
then n(T — A\ J) < oo. In the following we will prove that Ay € p3(T'). By pg € p3(f(T)),
there exists § > 0 such that f(T) — ul is Weyl and N(f(T) — ul) C ﬁl R[(F(T) — pI)"]

=

if 0 < |pu — po] < 6. Since f is analytic, for A;. there exists € > 0 such that 0 <
IFOAL) = FOO)] = 1F (V) — ol < 6 1£0 < [X) — Ay < e Then f(T) ~ f(X)I is Weyl and
o

NIA(T) - FO)I) € n RI(f(T) = fF(A)D"). Let

FT) = FODI = (T = MDA(T = Xy D)= - (¢ = N T) " I(T),

where A(T) is invertible. Since Browder’s theorem holds for f(T'), we get that f(T")— FODT
is a Browder operator. Then f(T) — f(A})[ is invertible ([T],Lemma 3.4). Thus T — NI
is invertible. Now we have that for )\, there exist £ > 0 such that T — A/ is invertible if
0 < |\ — Ml <&, s0 A € p3(T). It is a contradiction.

Corollary 3 IfT is isoloid and Weyl’s theorem holds for T', then the following statements

are equivalent:
(1) f(os(T)) = o3(f(T)) for every f € H(a(T));
(2) Browder’s theorem holds for f(T') for every f € H{o(T));
(3) Weyl’s theorem holds for f(T') for every f e H(a(T)).

Proof (1) <= (3) See Corollary 2.
(1) = (2) See Theorem 4.
(2) == (1). We only need to prove that o3(f(T)) C f(o3(T)). Let po € o3(f(T)) and

po is not in f(o3(T)). Suppose
FT) = ol = a(T = MD)™ (T = XoD)™ -+ (T = And)"" 9g(T),
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where a, A\, A2, -, Am € C, X; # X; and g(T') is invertible. Since
N(f(T) = pol) = N(T =2\ D)M @ N(T = X1) & - - & N(T — A1),
it follows that n(f(T") — pol) < co. For X;, there exists €; > 0 such that 7'~ NT is Weyl
and N(T' - XNI) C Oﬁ R[(T — X.I)"]. Since Browder’s theorem holds for T', we know
=1

that T — X[ is inverntible‘ Then A, € isoo(T). Using the fact that T is isoloid, it follows
that 0 < n(T — M) < co. Then A, € moo(T). The fact that Weyl's theorem holds for T
induces that T — )1 is Browder, so f(T) — pol is Browder, therefore pg € p3(f(T)). It is
in contradiction to the fact that ug € o3(f(T)). This completes the proof.

Remark From the proof of Corollary 3, we find that: if T is isoloid and Browder’s
theorem holds for T, then (1) and (2) are equivalent.
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