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Abstract: A subset of the vertex set of a graph is a feedback vertex set of the graph if

the resulting graph is a forest after removing the vertex subset from the graph. In this
paper, we study the minimum-weight feedback vertex set problem in outerplanar graphs
and present a linear time algorithm to solve it.
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Given an undirected graph G = (V, E) and nonnegative weights w, for the vertices
v € V, the minimum-weight feedback vertex set problem (FVS) is to find a minimum-
weight set of vertices F' that meets every cycle of G. Alternatively, the problem is to find
a minimum-weighted F such that G|V — F| is acyclic, where G[S] denotes the subgraph of
G induced by the vertex set S. We say that a set of vertices F' is an FVSif it is a feasible
solution to the problem.

The minimum feedback vertex set problem has long been known to be NP-hard (See
[6], Problem GT7); hence, researchers have attempted to find approzimation algorithms
for the problem. An a-approximation algorithm for FVS runs in polynomial time and
finds an FVS whose weight is no more than o times the weight of an optimal FVS.
The value «a is sometimes called the performance guarantee of the algorithm. Until now,
the best performance guarantee for FVS in general graphs is 2. Two slightly different
2-approximation algorithms were given by Bafna, Berman and Fujitol®l and Becker and
Geigerl3l. In order to study wavelength conversion in optical networks based on wavelength
division multiplezing (WDM), Kleinberg and Kumar!® developed the first polynomial-time
approzimation scheme (PTAS) for the cardinality feedback vertex set problem in planar
graphs.
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There may be exact polynomial time algorithms of the problem for some special graphs.
For example, LI and LIU® provided a polynomial algorithm for the cardinality FVS prob-
lem in 3-regular simple graphs. Many problems can be solved in polynomial time in graphs
with bounded tree-width by tree-decompositiontl. A graph is outerplanar if it has a planar
embedding with all vertices lying on a single face. The main contribution of this paper
is to discard the tree-decomposition and provide a new linear time exact algorithm for
the minimum-weight FVS problem restricted to outerplanar graphs by some “contraction
operations”, which contract the graph while preserving all important properties and in-
formation relevant to the problem.

1. Preliminaries

In this paper we consider only finite simple graphs G = (V, E) with vertex set V and
edge set E; that is, there are no self-loops or multiple edges. A homeomorph of a graph
G is a graph obtained from G when its edges are subdivided into paths by inserting new
vertices of degree two. An equivalent definition of outerplanar graphs is as follows:

Definition 101 A graph is outerplanar if and only if it has no subgraph homeomorphic
to Ky 3 (a complete bipartite on a set of two vertices and a set of three vertices) or Ky (a
complete graph on four vertices).

Clearly, outerplanar graphs are special planar graphs. Since any n-vertex planar graph
with n > 3 contains no more than 3n — 6 edgesl®l, we get O(|V|) = O(|E|) for any
outerplanar graph G = (V, E).

A graph is 2-edge-connected if the deletion of a single edge does not disconnect the
graph. A graph is 2-connected if the deletion of a single vertex does not disconnected the
graph. We can first run a linear (with respect to O(|V| + |E|) = O(|V])) algorithm(¥ to
decompose the input graph into its 2-edge-connected components, then work with each 2-
edge-connected component separately, since the edges that are cut edges cannot be on any
cycle. Therefore, we can assume that the graph under consideration is a 2-edge-connected
outerplanar graph.

A plane graph is a particular drawing of a planar graph in the plane without edge
crossings. Each plane graph has exactly one unbounded face, called the ezterior face; the
other faces can be called interior faces. Clearly, a graph has a cycle if and only if it has
an interior face. Thus, if f is an interior face of a plane graph, then any feedback vertex
set contains a vertex on f. An outerplane graph is a planar embedding of an outerplanar
graph with every vertex on the exterior face.

Let G be a 2-edge-connected outerplane graph. Clearly, the boundary of an interior
face f forms a cycle of G, called a minimal cycle. The degree of a face f is the number
of edges on the boundary of f. Since any outerplanar graph contains no homeomorph of
K3, any two minimal cycles(interior faces) share at most one edge with each other.

Given a plane graph G and its dual G*, the weak dual of G is the graph obtained from
the dual G* by deleting the vertex corresponding to the exterior face of G. Since any
outerplanar graph contains no homeomorph of K4, we can observe that

(i) The weak dual of an outerplane graph is a forest.

(ii) The weak dual of a 2-connected outerplane graph is a tree.
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Let v be a vertex of degree two with two neighbors v' and v" in a given 2-edge-connected
outerplanar graph G. If w, > min{wy, w,}, then there is such an optimal FVS that
contains no the vertex v. A 2-edge-connected outerplanar graph is contracted if there
is no vertex of degree 2 v with two neighbors v’ and v" such that w, > min{w,, wy}.
If a 2-edge-connected outerplanar graph G is not contracted, we can use the following
algorithm to contract G.

Algorithm Contraction

1. Input a 2-edge-connected outerplanar graph G = (V, E) and label all vertices unuvis-
ited.

2. Select a vertex v of degree two. Let vertices v’ and v” be its two neighbors.
If (v',v") € E and w, > min{wy, wy}, then V « V — {v} and E « (E -
{(v,v"), (v,v")}) U{(v',v")}. Else, label v visited.

3. Repeat Step 2 until all vertices of degree 2 are visited and there is no vertex to be
removed. Output G = (V, E).

In the algorithm contraction, a vertex may be visited more than once if we always
selected a vertex in Step 2 randomly. However, the algorithm may run in linear time by
depth-first search. It follows that in this paper we need only to consider the FVS problem
with respect to a contracted 2-edge-connected outerplanar graph.

The edges on the boundary of the exterior face of a plane graph are called outer edges
and the other edges are called inner edges. An interior face is called to be initiatory
if its boundary contains at most one inner edge. It is clear to see that the boundary
of any initiatory face is a triangle for a contracted 2-edge-connected outerplanar graph.
Clearly, for each leaf (vertex of degree 1) of the weak dual of an outerplanar graph G, the
corresponding face is initiatory. It is well-known that every nontrivial tree has at least
two vertices of degree one. Analogically, we have

Theorem 1 If G is a 2-edge-connected outerplanar graph, then G contains at least one
initiatory faces.

We can begin from an initiatory face to seek feedback vertices. A mazrimal outerplanar
graph (MOG) is an outerplanar graph such that no edge can be added without violating
this propertyl”.

Theorem 2 Let G(V, E) be a maximal outerplanar graph with |V| > 3, then (i) each
interior face is triangular; (ii) connectivity of G is k(G) = 2.

In the following section, we shall consider the minimum-weight feedback vertex set
of maximal outerplanar graphs. In Section 3, we shall consider the problem in general
outerplanar graphs.

If G; and Gy are subgraphs of G, the union G; U Gy of G; and G is the subgraph
with vertex set V(G1) UV(G2) and edge set E(G1) U E(Gs). We use w(S) to denote the
weight of a given vertex set S. Other notation and terminology not defined here can be
found in [4].
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2. Feedback vertex sets in maximal outerplanar graphs

Given a maximal outerplanar graph G(V, E), we shall study the feedback vertex set of
G in this section.

Since G is 2-connected, the weak dual of G is a tree. Corresponding to each triangle
[ of G there is a vertex f* of the weak dual of G; and corresponding to the edge e shared
by two triangles f and g there is an edge e* joining the corresponding vertices f* and g*
of the weak dual of G. Clearly, any edge shared by two triangles can separate the graph
into two parts. Given a subgraph G| of G, we say that G is a subgraph separated by edge
(u,v) from G if there is exactly one edge (u,v) with its two ends u and v in G adjacent
to vertices not in G7.

As shown in Figure 1, we optionally select a triangle uvw from G. Since the weak dual
of G is a tree, uvw separates G into three parts. Let G, be a subgraph of G sharing the
edge (u,v) with the triangle uwvw and separated by (u,v) from G. Analogously, G, and
Gy are defined to be separated by (u,w) and (v, w) from G, respectively. Obviously, any
two of Gy, Guw and Gy, are edge-disjoint and G = Gy U Guw U Gow-

Figure 1

We define four feedback vertex sets of G, as follows:
(1) An optimal FVS in the case of containing » but no v, denoted by F,Eu’v);

(u.v),

(2) An optimal FVS in the case of containing v but no u, denoted by Fy |
(u,v
Fuy™s

(3) An optimal FVS in the case of containing both « and v, denoted by )
(up),

(4) An optimal FVS in the case of containing neither u nor v, denoted by F5™";

Since whether an optimal FVS of G, contains either u or » was memorized in the
four feedback sets defined above, there must exist one among the four vertex sets which
can be extended into an optimal FVS of G. Thus, we call the four feedback vertex sets
of Gy 3s candidate sets associated with (u,v), and use Fyy to denote the collection of

(u,v) (u,v) (u,v
uy

the four candidate sets of Gy, that is, Fyy = {Féu’v), A , Fo ) }. Similarly,
Fuw = {FS, FE), B, By,
U - b ’ ?
Suppose we have obtained two collections of candidate sets Fyy of Guy and Fuw of

Guw- We now compute the four candidate sets of Gyy = Gy U Gy U uvw.
1. Find a set of minimum weight, denoted by Fvv’w), in {F,S"’v) UFéu’w), Féu,v) UFéu’w),
FEY U FSY), Y U FSYY (Since w(FS™ U FS™ U o)) 2 w(FR™" U FY),

we can ignore the union of F(Su’”) (%) and v.). Clearly, F') is an optimal FVS

bl

of G4y in the case of containing v but no w.
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2. Find a set of minimum weight, denoted by F(v’w in {Fy () UF(u w) , Fo (wt) y g
F{ g Fs™), F*u Fui‘uw)} (Ignore F*u F‘Su )y {w}.). Clearly, F™ is an

optimal FVS of Gy, in the case of containing w but no v.

3. Find a set of minimum weight, denoted by F w) , in {F("’v UF, (u w) Fvu’v) R w),
FEO YRR, FE YL m)} Since w(Fo” ) UFéu w)U{v, w}) > w(F,S“’”) UER™ w)),
we ignore the union of F{e) F(v ) and {v,w}). Clearly, 53}'”) is an optimal FVS

of Gy in the case of contammg both w and v.

4. Find a set of minimum weight, denoted by F%) in {Féu’v) U FSew), Fuv) y gl
Fiy F&”’w)} (Since w(ng"’v) u F) g {u}) > w(Féu’v) U Fo"’w)), we can ignore
the union of F{Y FS%) and u.). Clearly, FS") is an optimal FVS of Guy in the
case of containing neither w nor v.

Therefore, we can use constant time comparisons to obtain a collection of candidate
sets associated with (v, w) of Gy, denoted by Fyyy = {F(" ) plew) F(v’w) F(v’w)} If
(u,v) is an outer edge, then we can obtain four candidate sets assomated with (u,v) as

follows:
) = {u}, F = {v}, Fi&™) = {u,v}, B = b

Since an initiatory triangle contains at least two outer edges, we can break triangles
from an initiatory triangle. Pick a vertex u of degree two with its two neighbors v and
w. Clearly, uvw is an initiatory triangle and both (u,v) and (u,w) are outer edges. Using
the collections of candidate sets F,,, and F,,,, we can compute a collection of candidate
sets Fyy associated with (v, w). Then delete u, (u,v) and (u,w) from G. (v, w) becomes a
new outer edge of the residual graph. Now, the entire process is repeated on the subgraph
G|V — u]. The process terminates when the residual graph contains no triangle. In
particular, we can select a triangle containing an outer edge (v',v”) of G and set the
last triangle to be broken is the triangle containing (v'v"). Finally, we would obtain a
collection of candidate sets associated with (v',v"”) of G. We can obtain an optimal FVS
finally because the optimal solutions for all cases was kept in memory at each iterative
step. The algorithm is given below.

Algorithm MOG

1. Input a maximal outerplanar graph G and select an outer edge (v',v") from G.
There are no labels for all edges.

2. If G consists of exactly one edge (v',v"), output a candidate set of minimum weight
in Fy» and stop. Else, go to Step 3.

3. Select a vertex u of degree two with two neighbors v and w and (v',v") & {(u, v), (u,w)}.
If there is no label on (u, v), then set F, = {F,Su’"), Féu’v), FS;’”’, F("’v)} {{u}, {v},
{u,v}, 0}. If there is no label on (u, w), then set Fy,, = {F,Su’w), F,S,u’w) F("’w) Fé"’w)}
= {{u}, {w}, {u,w}, 0}. Use F,, and Fy,, to compute Fyy. Then set G G[ —u)
and go to Step 2.
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1t is easy to see that the main loop of Algorithm MOG executes elementary operations
totally within constant times. Therefore, the complexity of the algorithm is linear.

3. Feedback vertex sets in general outerplanar graphs

Now we consider feedback vertex sets in general outerplanar graphs. Let G be a
contracted 2-edge-connected outerplanar graph.

A block of a graph is a maximal connected subgraph that has no cut vertices. Since
we only consider 2-edge-connected outerplanar graphs in this paper, every block of G is
2-connected. We can find all blocks and cut vertices of G by a spanning tree T. Corre-
sponding to each e ¢ T there is a unique cycle in T + e. If such two cycles have at least
two common vertices, then they are in an identical block. Therefore, we can find all blocks
and cut vertices of G in O(|V] +|E}) = O(JV]) timel®.

If there are at least two blocks in G, then there are at least two blocks that each
contain exactly one cut vertex. Given a block b containing exactly one cut vertex u of G,
we define two feedback vertex sets:

(i) an optimal FVS of b in the case of containing the cut vertex u, denoted by F?;

(ii) an optimal FVS of b in the case of containing no u, denoted by F?.

It is obvious to see that either of the two feedback vertex sets of b can be extended
into an optimal FVS of G. We call the two feedback vertex sets of b as candidate sets
associated with u, and use F to denote the collection of the two candidate sets of b.
iLe., Fb = {F! F!}. Now, we will design a polynomial algorithm to find a collection of
candidate sets associated with u of b.

Let f be an interior face of degree k in b and C the minimal cycle corresponding to f.
As shown in Figure 2, edges (v1,v2), (v2,v3), ..., (vk—1,vx) of C are shared with subgraphs
G12, G2, ---,Gr-1, of b, respectively. Suppose that we have obtained k1 collections of
candidate sets of Gy 2, Ga3, ..., Gr—1, denoted by Fy, vy, Fuguvgs - - - s Fuy_y vy » TeSpectively.
For each G;,41,1=1,2,...,k — 1, we denote

Fovins = {Fé:’i,vi-H)’ Féﬁ,lviﬁ)’ Fé:/;ﬁzlﬂ)’ FO(U“'UI-)-I)}'
We now use these collections of candidate sets to find a collection of candidate sets associ-
ated with the last edge (v, vy) of C, denoted by Fy o, , of G1 g = G12UGo3U- - -UGg_ ;UC.

Figure 2
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If k = 3, we can use the method in Section 3 directly. Else, we define G 3 =
012UG'23,G<14) G(13)UG34,.. G(llc) G(lk 1>UGk 1,k For each 1 € {3,...,k},
we can define four candidate sets of Gy 3 associated with v; and v; as follows:

1. an optimal FVS of G(; ;) in the case of containing v; but no v;, denoted by Fé"l’v‘),

2. an optimal FVS of G ;) in the case of containing v; but no vy, denoted by F(U”v’)

3. an optimal FVS of Gy in the case of containing both v; and v;, denoted by
Fii,

4. an optimal FVS of G, ; in the case of containing either v; nor v;, denoted by
R,

We use Fy, v,y to denote the collection of the four sets above. We can compare all of
possible unions of two candidate sets picked from F,,, and Fy,,,, respectively, to find a
collection of candidate sets Fy,, .,). Analogically, we can compute F,, v, - -5 Fo )

Notice that the candidate set Fi**) in Fiv;,0) POssibly contains no vertex of the
cycle C. If F <v1’v’°> contains vertices of C, then Fy y, = Fiy, 4,y Otherwise, we assume
that Févhvk) contains no vertex of C, that is, F,,<v1’v’C> = Fo(vl’w) UF(SUZ’W‘) U Ungk‘l’vk).
In other words, F{"") = F{"vi-1 gy F™=1%) § = 3.4,... k. We know that each
F"%) is a minimum- -weight set of {va’v’ 1>UF(Uz I’v’) F<"1’U’ 1)UF(U’ 1:%:) Fv(v"v’ Dy
Flored) | pivnvion G plsne) Now et Févl’m be a mmlmum-welght set of{ Ry
piv ), et i) g GOy o g 4 Clearly, cach B8
must contain exactly v;_; of C’ and each Fo(vl’v’ U (U’c IF(UJ ’U’“)) must break all cycles
of G . Therefore, we select a minimum-weight set from {F, v | (Uk L p (v 0 “)) i=
3,4,...,k} as the candidate set containing neither v; nor v of G . Clearly, the other
candldate sets of G  are equal to the corresponding candidate sets of G (1,k)» respectively.

In addition, since we want to find a collection of candidate sets associated with the cut
vertex u, we can select an outer edge (u,u’) containing u and try to find a collection of
candidate sets associated with (u,u’). The algorithm for finding a collection of candidate
sets associated with u of b is given below.

Algorithm Block

1. Input a block b = (V3, E}) where Vj, is the set of vertices and Fj, is the set of edges
of b. Select an outer edge (u,u') of b containing the cut vertex u and compute the
candidate sets of each outer edge except (u,u').

2. If b contains at least one cycle, go to Step 3. Else, go to Step 4.

3. Pick such a cycle C = (V,, E) that all the edges except (v,w) are outer edges and
(u,u') € E; — {(v,w)}(notice that the edge (u,u’) just is the edge (v,w) provided
that b is C'). Compute the collection of candidate sets associated with (v,w), Foe.
b < b[Vy — (Ve — {v,w})] and go to Step 2.

4. Select an optimal candidate set FY containing u and an optimal candidate set F?
containing no u from ¥,,, and output them.
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From the definition of F,, ., and each ﬁ»o(vx,m, the complexity of algorithm block is
linear in the size of the block. If G is a block itself, we can use algorithm block to find
an optimal FVS of G. So we suppose G consists of at least two blocks. Pick a block
containing exactly one cut vertex, supposing it is v, of G. Possibly there are more than
one block containing the unique cut vertex v. Let by, bo, ..., b be these blocks each of
which contains the unique cut vertex v.

For each b;, 1 <4 <, using algorithm block, we can compute a collection of candidate
sets FUi = {F%, F¥}. Let B = b U---Ub;. We can define two candidate scts of B as
follows:

1. an optimal FVS of B in the case of containing v, denoted by F?;

2. an optimal FVS of B in the case of containing no v, denoted by F2.

We use F, to denote the collection of the two candidate sets of B. Since by, by,..., b
only share the vertex v with one another, we can set FP = FOU U F»2 u..-U Fu. For
each F% 1 < i < I, we compare the two candidate sets of FUi. If w(F%) < w(FY),
then we set F% = FY%. Else, F% = F. Clearly, if UL, F¥ contains v, then we can set
EEB = J._, F%. Else, compare each F% U (Uksi Fb) 1 <4 <1, to find a minimum-weight
set which can be set as FP.

If we have obtained F, for the cut vertex v, then we only retain v and delete the other
vertices and all edges of B from G. If the residual graph is not a single vertex, then we can
observe that v is shared with two outer edges of a block in the residual graph. Suppose that
(u,v) is an outer edge incident on v in a block 0. If Fy,, = {Fzﬁ“”’), Fvu’v), 7%,1))7 chu’v)} =
{{u}, {v}, {u,v}, 0}, then we modify the collection of candidate sets associated with (u,v)
as follows:

Fup = {Féu,v)’ Féu,v)’ Fég’v), Fo(u’v)} = {FOB U {u}7 FvB7 FvB U {u}v FOB}

Then, we label (u,v) changed. Therefore, we can “add” the collection of candidate sets
F, of B to an outer edge that has not been labelled changed in an block of the residual
graph. We can first label all outer edges unchanged. If the collection of candidate sets of
an outer edge has been modified, we label the edge changed.

We now again consider all blocks that each contain a unique cut vertex v" in the
residual graph. We repeat the procedure until the residual graph is a single vertex.
Notice that in the first step of Algorithm Block, the selected edge (u,u’) must be an
edge labelled unchanged and for each unchanged outer edge (v, w) excluding (u, '), set
Fow = {Fvv’w), F) | Flam), Fév’w)} = {{v}, {w}, {v,w}, 0}. Below we give the main
algorithm.

Algorithm FVS

1. Input an outerplanar graph G. Find all blocks and cut vertices of G. Label each
outer edge unchanged.

9. If G is a block, invoke algorithm block to output an optimal FVS of G. Else, go to
Step 3.
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3. Pick blocks containing exactly one cut vertex v. Let by, b, ..., b be all of the blocks
that each contain the unique cut vertex v. Set B = UL, b;. Invoke algorithm block to
compute the collection of candidate sets Fb = {Fb, Fb} for each b, i =1,2,...,1.
Then compute the collection of candidate sets F, = {F,, FB} of B.

4. Delete all edges and all vertices of B except v from G. Redefine G as the residual
graph. If G is a single vertex, go to Step 5. Else, select an unchanged outer edge

(u,v) incident on v from a block and modify the candidate sets of (u, v) as follows:
Fwv)  pB Fev)  FB U {u}, FY « FE U {u}, F*") « F}.

uy

Then label (u,v) changed and return to Step 3.

5. Output a minimum-weight candidate set from F,.

Since we can find all blocks’ candidate sets in O(|V]) time, the complexity of algorithm

FVS is linear.
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