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Abstract: A fundamental result in topological graph theory by H.Whitney states that
a 3-connected graph has at most one planar embedding. C.Thomassen generalized this
to LEW-cmbeddings on higher surfaces. We establish several unique embedding results
for 3-connected graphs on orientable surfaces which admit relatively large facial walks
and representativity and hence generalize Thomassen’s uniqueness theorem on LEW-
embeddings.
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1. Introduction

Graphs considered here are finite, simple, and undirected. Terminologies not explained
may be found in Gross et al™), LiuP®!, and Thomassen.

A surface is a compact 2-manifold without boundary. An (A) orientable (nonori-
entable) surface of genus k is homeomorphic to the sphere with k handles (crosscaps). A
graph G is called embedded on a surface ¥ if G may be drawn on ¥ such that each com-
ponent of ¥ — F(G) is homeomorphic to an open disc and such embeddings are written
as I1. For an embedding II, its facial set is denoted by F and each face ( facial walk ) is
called I-face (facial walk). By a Il-facial walk f we sometime also mean a face of II for
convenience. If a facial walk has its boundary as a cycle (i.e., having no vertices repeated
more than once), then it is also called a facial cycle. A curve ( circuit) C on X is called
contractible if ¥ — C is disconnected and one of the components, which Thomassen! called
inner part of C, is homeomorphic to an open disc; otherwise it is named noncontractible.
Let C be a cycle of a graph embedded on a surface. If C has no chord and G — C has
only one component, then it is called an induced nonseparating cycle. Two embeddings of
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C on 3 are considered to be the same if there exists a self-homeomorphism of the surface
which induces an isomorphism of G. Let II be an embedding of G on % and

ew(G, ) =min{| C |: Cis a noncontractible cycle of G on ¥},
ps(G,II) =min{| CNV(G) |: Cis a noncontractible curve on X}

be respectively the edge-width and representativity (or face-width as some scholars called
it) of II. It is easy to see that ew(G,II) > ps(G, ). An embedding IT is called an LEW-
embedding (i.e., Large-Edge- Width-embedding) if the length of every facial walk is less than
ew(G, II). Intuitively, an LEW-embedding is one which embeds a given graph, if possible,
densely. A fundamental result for topological graph theory by H.Whitney!® states that a
3-connected graph has at most one planar embedding, i.e.

Theorem 18 There is only one way to embed a 3-connected planar graph in the plane.
W.Tuttels) obtained Whitney’s uniqueness theorem from a combinatorial view of facial

walks—induced nonseparating cycles, i.e.,

Theorem 2[5 Any planar 3-connected graph has a planar embedding such that every
bounded region (i.e., facial walk) is convex.

Thus, every isomorphism of a 3-connected graph on the plane can determine a homeo-
morphism of the sphere. To extend those to higher surfaces, C.Thomassen!*) investigated
almost every aspect of LEW-embedding (a concept due to J .Hutchinson[?!) on general ori-
entable surfaces and showed that such embeddings share many properties with 3-connected
planar graphs.

Theorem 3[4 Let Il be an LEW-embedding of a 3-connected graph G. Then the fa-
cial walks are precisely those of induced nonseparating cycles of G with length less than
ew(G,1I).

Theorem 44 For a 3-connected graph G and a given orientable surface %, there is at
most one LEW-embedding.

Although these results successfully extend Whitney’s theories to higher surfaces in the
case of LEW-embeddings, one may easily see that the conditions of Theorems 3 and 4
are somewhat too strict and hence many other unique embeddings for graphs on general
surfaces may be excluded. For instance, many 3-connected near-triangulations (i.e., those
having all facial walks 3-gons except possibly one which may have large length) with
relative large representativity on a surface may also be embedded uniquely as analysed
later. In fact, let

=[{f:feF | fl|zew(GI)}|

then LEW-embeddings are those of special case [ = 0. We call such facial walks with
length not less than the edge-width large facial walks (cycles). The purpose of this paper
is to investigate the properties of the embeddings on surfaces which permit several relative
large facial walks (with their length not less than ew(G,II)) and hence fill some gaps left
by Whitney, Tutte, and Thomassen.

Theorem A Let G be a 3-connected graph with II as an embedding on an orientable
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surface ¥ such that pz(G,II) > max{l + 1,3} and
Vi€ F, | f1z ew(G 1) =] f |< 2p2(G, 1), (1)
then G is uniquely embedded on 3.

Remark (1) This generalizes Theorem 4 if considering the case of [ = 0 since an LEW-
embedding of a 3-connected graph satisfies condition (1) and further, it must have repre-
sentativity > 3 as we have shown late; (2) If a 3-connected graph G may be embedded on
an orientable surface in different ways, at least one of the embeddings must have either
several “large” facial walks or “small” representativity.

More generally, for a positive integer &, we have

Theorem B Let G be a 3-connected graph with I1 as an embedding on an orientable
surface ¥ such that pg(G,1I) > max{(k ~ 1)l + 1,3} and

Ve F, | £z ew(G ) = f |< kp(G,T), 2)

then G is uniquely embedded on .

If we consider the case of [ = 1 and ignore the restriction (2) on the lengths of large
I1-facial walks, then we have the concept NLEW-embedding (i.e., near-large-edge-width-
embedding) and the next

Theorem C Let G be a 3-connected graph and ¥ be an orientable surface. Then ()G
has at most one NLEW-embedding with representativity > 3 on X; (ii)G can not have
both an LEW-embedding and an NLEW-embedding on the same orientable surface.

Remark (1) From the proof of Theorem C we may find that for a 3-connected graph G, it
can not have both an LEW-embedding and an NLEW-embedding on the same orientable
surface, but it may have both of them on distinct surfaces; (2) In [4] Thomassen showed
that an LEW-embedding must also be a minimum embedding (i.e., the genus of the surface
in which a 3-connected graph embedded is the genus of the graph). Thus if G is 3-connected
and has both of an LEW- embedding and an NLEW-embedding, then the latter is not
minimum.
Now we consider another version of Theorem B.

Theorem D Let G be a 3-connected graph with II as an embedding on an orientable
surface T such that pn(G,II) > 3 and

VfeF,| |2 ew(G ) = (k- 1)l <| f |< kps(G,1T0), (3)
where k is a positive integer. Then G is uniquely embedded on X.

Remark (1) One may see that Theorem B is not equivalent to Theorem D; (2) it seems
that the low bound of Theorem D is sharp. One may see this from Fig.1, although it
showing embedding on nonorientable surface, in which two combinatorial distinct embed-
dings of Peterson graph on the projective plane where p = 3,1 = 6,k = 2 and the cycle
C = (a,b,¢c,d,e, f,a) in the left is transformed into a noncontractible one with exactly 6

large faces on the both sides of C.
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Fig.1. ( 2 distinct embeddings of Peterson Graph on the projective plane )

II. Proofs of main results

In this section we are concerned with the validity of Theorems A, B, C, and D. But
first we should set up several lemmas.

Lemma 2.1 Let G be a 2-connected graph with an embedding II such that ps(G,II) > 2.
Then each I1-facial walk is a cycle.

Proof Suppose the contrary. Then II has a facial walk, say f, which is not a cycle. Let
C be a closed subwalk of f with shortest length. Then C is either a link edge or a cycle
with length at least 2. Since G is 2-connected, C is either contractible or not. If C' is
noncontractible, then we have ps(G,I1) < 1, a contradiction; if C is contractible, then C
is the form zjzs......cT1, where only z is incident with the outer part of C (i.e., possible
nonplanar part of ¥ — C). Hence z; is a cutvertex, a contradiction as required.

The following property says that the representativity of an LEW-embedding cannot
be too small.

Lemma 2.2 Let G be a 3-connected graph with an LEW-embedding I1 on an orientable
surface &, then ps(G,1I) > 3.

Proof Suppose the contrary. Then we have px(G,II) < 2. If ps(G,II) = 1, then there
exists a facial walk, say f, which contains a noncontractible cycle C of X intersecting f at

only one vertex u as shown in Fig.2.
h
ﬁv

Fig. 2 Fig.3

Let us consider the smallest closed subwalk of f, say C’, which contains u. Since
G is 2-connected and u is a repeated vertex of f, C' is a noncontractible cycle. Noting
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that | f |< ew(G,II), we have | C' |< ew(G,II), a contradiction with our definition of
ew(G,1I). If p(II) = 2, then every facial walk is a cycle by Lemma 2.1 and there exists a
noncontractible cycle, say C”, contained in the inner part of two facial cycles f1, fo and
intersecting G on the boundary of fi, f» at u and v as shown in Fig.3. Note that u and
v divide each boundary of f; and f; into two segments. Chose P; and P, as the shorter
part of f; and fo (connecting u and v) respectively. Then

1
{2?%2 l Pz |< §CW(G, H)a

and P and P form a noncontractible cycle C' with length
| C" = P+ | Py < ew(GT0),
again contrary to the definition of ew(G,II). O

Lemma 2.3 Let G be a 3-connected graph and Il be an embedding with representativity
ps(G, I} > 3. Then every facial walk is an induced nonseparating cycle.

Proof Let C be a facial cycle of TI. If C has a chord e with end vertices v and v on
C, then e must be in the outer part of C since the inner part of C is an open disc. Let
uPv be a segment on C determined by u and » . The cycle uPv + e is contained in the
boundaries of two faces. If uPv + e is noncontractible, then we have py(G,II) < 2; if
uPv + e is contractible, then {u,v} will be a 2-cutvertex set since G has no multi-edges.
Either case will lead to a contradiction. Hence C has no chord (i.e., an induced cycle).
Next, suppose that G~ C has more than one component. Then some Il-facial cycle C’ will
intersect C at two vertices u' and v’. Again this will lead to a structure shown previously
and consequently result in contradictions. This ends the proof of Lemma 2.3. O

Remark From the definition, the following holds:

Fact 1 If an induced nonseparating cycle is contractible in an embedding, then it bounds
a facial walk.

Proof of Theorem A Suppose that G has two embeddings II; and II; on an orientable
surface ¥ and each has exactly {; and I large facial cycles respectively, say f; and g;(1 <
i<l,1 <5 <ly), suchthat for 1 <i <1y, 1 <5<y,

C’U)(G,Hl) Sl fi l< QPE(Ganl)a B’U)(G,Hg) S‘ g4 ‘< sz(G,H‘Z) (4)

Note that by Euler’s formula on polyhedrons, the number of I1;-facial cycles is equal
to those of IIs. Let their facial sets be respectively as

~f.l ={f11f27"'af117f11+1""afm}a
-7:2 ={91)921""glgﬁgl2+17" . 1gm}-

Suppose ew(G, ) < ew(G,II3). Then by definition each I1,-facial cycle with length
less than ew(G, II;) is also a I,-facial cycle by Lemma 2.3, i.e.,
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Fact 2 {fi,+1,"-"»fm} S F1NFp andly 2 by .
By Lemma 2.3 each facial walk of II; and I, is an induced nonseparating cycle and

further, we have

Fact 3 II; has a facial cycle noncontractible in Il if and only if I, has a facial cycle
noncontractible in IT;.

Suppose that there is an large Ilp-facial cycle, say g1, which is noncontractible in II;.
By Lemma 2.1, no vertex appears more than once in the same facial cycle. If there is
an large I1;-facial cycle, say fi, which is noncontractible in II; and intersects g; at two
segments P, and P, each having at least two vertices, then there exists a subpath P
of fi which has no intermediate vertices of g; and joins two vertices u and v of g1 (in
fact we may chose P such that | P |< ew(G,II;) ). Then a segment of g; determined
by u and v together with P will form a cycle C. If C is contractible, then g; will be
separable; if C is noncontractible, then each of the segments on g, determined by u and
v will have at least ps (G, II;) vertices. Hence we have | g1 |> 2px(G,I1;), thus (from (1))
we have py(G,Il;) > pz(G,I1;). Note that this argument is still available for f; (since
f1 is noncontractible in II3). By symmetry, pn(G,1I;) > pp(G,I12), a contradiction as
required. We now have shown the following

Fact 4 If IIp has an large facial cycle which is noncontractible in II;, then any large
II;-facial cycle which is noncontractible in Iy will intersect the former at no more than
one segment which contains at least two vertices.

We now consider the case of “smaller” IIy-facial cycles noncontractible in IT;. Suppose
that there is a IIp- facial cycle, say gi,+1, with length less than ew(G,II;) and noncon-
tractible in II;. Then the length of it will not less than py(G,II;) and by Fact 3, II; has
a large facial-cycle, say fi,+1, noncontractible in IT5. Furthermore, we have

2p2(G,111) > fip41 |2 ew(G, II).

If those two cycles intersect each other at more than one segments, each having at
least two vertices, then we have

2PE(G’H1) —<—I 9ip+1 |a 2P2(Ga H2) S, f12+1 '< 2,053(0', Hl)a

Le., p2(G,II) > px(G,IT3). Further, these will imply ew(G, TI2) > 205 (G, I15), a contra-
diction with the conditions of Theorem A. Thus, we have proved the following

Fact 5 If II; has a facial cycle which is noncontractible in II; and with length less than
ew(G, 1), then any large I1;-facial cycle which is noncontractible in IT; will intersect the
former at no more than one segment which has at least two vertices.

Suppose that II has a facial cycle, say g, noncontractible in II;. Then the length of
g is at least px(G,II;), i.e., there are at least p=(G,1L)(> 11 > l3) domains bound each
side of the boundary of g. By Facts 4 and 5 and an easy counting one may see that there
exit three ITp-facial cycles (one of them is g) sharing a common edge, a contradiction with
the fact that each edge in an embedding is on the boundary of at most two facial walks.
Thus, each Il-facial cycle is also a IT;-facial cycle. Since every edge is in two II;-facial
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cycles and two II;-facial cycles, we conclude that the II;-facial cycles are the same as the
IIp-facial cycles, i.e., ; = F,. Hence I1; = II,. This completes the proof of Theorem A.
From the proof of Theorem A, we may conclude the next

Lemma 2.4 Let G be a 3-connected graph with II as an embedding on an orientable
surface .. Suppose that f is an induced nonseparating noncontactible cycle and g is a
facial cycle of 1. If f and g share k segments (each of them contains at least two vertices)
in common, then

| £12 kps(G,TI). (5)

As a matter of fact, we may suppose that such k segments have respectively the form
of z1Piy1, 2o Poya, ...... , Tk Pryk ( where z; # y; for 1 <i < k). By Lemma 2.1,

TPy NPy = ¢, 1<i#j<k.

Since every segment is on the boundary of g, there are k pairwise disjoint subpaths of g,
say Q1,Q2,- -, Qk, such that each @; connects two vertices of f and has no intermediate
vertices on f. As we have reasoned in the proof of Theorem A, all three cycles formed by
Qi and f are noncontractible. Thus, each segment of f determined by the two ends of Q;
has length at least px(G,II). Hence (5) follows from counting of this for 1 <¢ < k. O

Proof of Theorem B We may employ Lemma 2.4 to the procedure used in our proof of
Theorem A and notice that Facts 1,---,5 are available and finally conclude that (under
the hypothesis in our proof of Theorem A) if II, has a facial cycle, say g, noncontractible
in II;, then the length of g is at least px(G,II;), ie., there are at least pn(G,I1;)(>
(k — 1)1 > (k — 1)I3) domains bound the two sides of g. By Facts 4 and 5 and an easy
counting one may see that there exit three IIp-facial cycles (one of them is g) sharing a
common edge, a contradiction with the fact that each edge in an embedding is on the
boundary of at most two facial walks. Thus, each Il,-facial cycle is also a I1;-facial cycle.
Since every edge is in two II;-facial cycles and two IIj-facial cycles, we conclude that the
I1;-facial cycles are the same as the II>-facial cycles, i.e., F; = Fo. Hence II} = II;. This
completes the proof of Theorem B. O

Proof of Theorem C Let us consider the case of { = 1 in the proof of Theorem A and
ignore the restriction | f1 |> 2p(I11) (] g1 |> 2p(I12)). As we have reasoned before, all ITo-
facial cycles are II;-facial cycles except possibly g (which is also an induced nonseparating
cycle from Lemma 2.3). If g; is noncontractible in I1;, then from pg(G,II2) > 3 and Lemma
2.1 we may conclude that there are at least two II;-facial cycles which are also of I1; sharing
a common edge of gy, although g; is only possible non-II-facial cycle. Again we will see
a contradiction appearing in the previous paragraphs. Thus g must be contractible in
11, and consequently be a Ilj-facial cycle. Since g is arbitrary and following the reasoning
we have used in the end of last paragraph we see that II) = IIo. This ends the proof of

Theorem C. O

Proof of Theorem D Let us start from the assumptions at the beginning of Theorem
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A’s proof. Notice that Lemmas 1,- - -, 5 are still valid and what we should do is to consider
the case that there is a IIo-facial cycle g which is noncontractible in IT;. Now we have

(k=1 < p=(G, 1) <| g |

domains lying on both sides of g. Since [; > Il and each large II;-facial cycle noncon-
tractible in I, intersects g at no more than k — 1 segments, each has at least two vertices,
by Facts 4, 5 and Lemma 2.4. Since the number of such large II;-facial cycles noncon-
tractible in IIs is no larger than [;(> l3) and there are at least (k — 1)I; + 1 II;-facial
cycles on the both sides of g, there exist at least two Ilx-facial cycles which will share a
common edge of g, a contradiction (with the fact that an edge in an embedding will be on
the boundaries of at most two faces). This ends the proof of Theorem D. O
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