Article ID: 1000-341X(2005)02-0197-07

Document code: A

Principal Quasi-Baerness of Skew Power Series Rings

LIU Zhong-kui, FAN Wei-li

(Dept. of Math., Northwest Normal University, Lanzhou 730070, China) (E-mail: liuzk@nwnu.edu.cn)

Abstract: Let R be a ring such that all left semicentral idempotents are central and α a weakly rigid endomorphism of R. It is shown that the skew power series ring $R[[x;\alpha]]$ is right p.q.Baer if and only if R is right p.q.Baer and any countable family of idempotents in R has a generalized join in I(R), where I(R) is the set of all idempotents of R.

Key words: weakly rigid endomorphism; p.q.Baer ring; skew power series ring.

MSC(2000): 16W60 CLC number: O153.3

1. Introduction

Throughout this paper, R denotes a ring with unity and C(R) the set of all central elements of R. For a nonempty subset Y of R, $r_R(Y)$ denotes the right annihilator of Y in R.

Recall that R is (quasi-) Baer if the right annihilator of every nonempty subset (every right ideal) of R is generated by an idempotent. In [9] Kaplansky introduced Baer rings to abstract various properties of AW^* -algebras and von Neumann algebras. Clark defined quasi-Baer rings in [7] and used them to characterize when a finite dimensional algebra with unity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. Further work on Baer rings and quasi-Baer rings appears in [1-4, 8]. As a generalization of quasi-Baer rings, G. F. Birkenmeier, J. Y. Kim and J. K. Park in [5] introduced the concept of principally quasi-Baer rings. A ring R is called right principally quasi-Baer (or simply right p.q.Baer) if the right annihilator of a principal right ideal of R is generated by an idempotent. Similarly, left p.q.Baer rings can be defined. A ring is called p.q.Baer if it is both right and left p.q.Baer. Observe that every biregular ring and every quasi-Baer ring are p.q.Baer rings. For more details and examples of right p.q.Baer rings^[5,6].

It was proved in [3, Theorem 1.8] that a ring R is quasi-Baer if and only if R[X] is quasi-Baer if and only if R[X] is quasi-Baer, where X is an arbitrary nonempty set of not necessarily commuting indeterminates. If R is a reduced ring, then R is Baer if and only if R[X] is Baer if and only if R[X] is Baer [3, Corollary 1.10]. If R is commutative and (S, \leq) is a strictly totally ordered monoid, then it is shown in [11, Theorem 7] that R is Baer if and only if R[X], the ring of generalized power series with coefficients in R and exponents in R, is Baer. It was proved in [6,

Received date: 2003-01-17

Foundation item: National Natural Science Foundation of China (10171082), TRAPOYT, the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China

Theorem 2.1] that a ring R is right p.q.Baer if and only if R[x] is right p.q.Baer. If R is an α -rigid ring, then it was shown in [8, Corollary 15] that R is a right p.q.Baer ring if and only if $R[x; \alpha, \delta]$ is a right p.q.Baer ring. For skew power series ring $R[[x; \alpha]]$, it was shown in [8, Theorem 21 and Corollary 22] that if α is a rigid endomorphism of R, then R is a Baer (a quasi-Baer, resp.) ring if and only if $R[[x; \alpha]]$ is a Baer (a quasi-Baer, resp.) ring. Also an example was given in [8] which shows that there exists a commutative von Neumann regular ring R (hence p.q.Baer) such that the ring $R[[x; \alpha]]$ is not right p.q.Baer. Thus a natural question of characterization of the right p.q.Baerness of skew power series ring $R[[x; \alpha]]$ is raised. In this paper, we give a necessary and sufficient condition for some rings under which the ring $R[[x; \alpha]]$ is right p.q.Baer. We show that for a ring R with $S_{\ell}(R) \subseteq C(R)$ and for a weakly rigid endomorphism α of R, $R[[x; \alpha]]$ is right p.q.Baer if and only if R is right p.q.Baer and any countable family of idempotents in R has a generalized join in I(R).

2. Weakly rigid endomorphism

Let α be an endomorphism of R. According to [8] and [10], α is called a rigid endomorphism if $r\alpha(r)=0$ implies r=0 for $r\in R$. A ring R is called to be α -rigid if there exists a rigid endomorphism α of R. Clearly, any rigid endomorphism is a monomorphism and any α -rigid ring is reduced. Generalizing these concepts, we give the following definition.

Definition 1 Let α be an endomorphism of R. α is called a weakly rigid endomorphism if

- (1) α is a monomorphism, and
- (2) if $a, b \in R$ are such that ab = 0 then $a\alpha(b) = \alpha(a)b = 0$.

Example 2 (1) Clearly the identity map of R is weakly rigid.

- (2) Let α be a rigid endomorphism of R. It was shown in [8] that if ab = 0 then $a\alpha^n(b) = \alpha^n(a)b = 0$ for any positive integer n. Thus any rigid endomorphism is weakly rigid. But the converse is not true. For example, suppose that the ring R is not reduced, then the identity map of R is weakly rigid but not rigid.
- (3) Let β be a weakly rigid endomorphism of ring R_0 and S a ring. Set $R_1 = R_0 \oplus S$, the direct sum of rings R_0 and S. Define an endomorphism α of R_1 via

$$\alpha(r,s) = (\beta(r),s).$$

Then it is easy to see that α is a weakly rigid endomorphism of R_1 . If β is not rigid, or S is a ring with a nonzero nilpotent element, then α is not rigid.

Proposition 3 Let α be an endomorphism of R. Then α is rigid if and only if α is weakly rigid and R is reduced.

Proof Let α be an endomorphism of the reduced ring R. If α is weakly rigid and $r \in R$ is such that $r\alpha(r) = 0$, then $\alpha(r)\alpha(r) = 0$. Thus $\alpha(r) = 0$ since R is reduced. Hence r = 0 since α is a monomorphism. This means that α is rigid. Conversely, if α is rigid, then, by [8], R is reduced.

Thus the result follows.

3. The right p.q.Baerness of $R[[x;\alpha]]$

Recall from [3] an idempotent $e \in R$ is left (resp. right) semicentral in R if ere = re (resp. ere = er), for all $r \in R$. Equivalently, $e^2 = e \in R$ is left (resp. right) semicentral if eR (resp. Re) is an ideal of R. Since the right annihilator of a right ideal is an ideal, we see that the right annihilator of a principal right ideal is generated by a left semicentral idempotent in a right p.q.Baer ring. The set of all left semicentral idempotents of R is denoted by $\mathcal{S}_{\ell}(R)$. The following result is a generalization of [6, Proposition 1.5].

Lemma 4 Let α be a weakly rigid endomorphism of R. If $e(x) = e_0 + e_1x + \ldots + e_nx^n + \ldots \in R[[x;\alpha]]$ is a left semicentral idempotent of $R[[x;\alpha]]$, then

- (1) e_0 is a left semicentral idempotent of R.
- (2) $e_0e_i = e_i, e_ie_0 = 0, \text{ for } i = 1, 2, \cdots$
- (3) $e(x)R[[x;\alpha]] = e_0R[[x;\alpha]].$

Proof We complete the proof by adapting the proof of [6, Proposition 1.4].

Let $r \in R$. Since re(x) = e(x)re(x), we have

$$\sum_{k=0}^{\infty} re_k x^k = \sum_{k=0}^{\infty} \left(\sum_{i+j=k} e_i x^i re_j x^j \right) = \sum_{k=0}^{\infty} \left(\sum_{i+j=k} e_i \alpha^i (re_j) \right) x^k.$$

Thus $re_k = \sum_{i+j=k} e_i \alpha^i(re_j)$ for any $k = 0, 1, \cdots$. From $re_0 = e_0 re_0$ it follows that $e_0 \in \mathcal{S}_{\ell}(\mathcal{R})$, so part (1) is satisfied. If we multiply equation $re_1 = e_1 \alpha(re_0) + e_0 re_1$ on the right by e_0 , then $re_1e_0 = e_1\alpha(re_0)e_0 + e_0 re_1e_0 = e_1\alpha(re_0)e_0 + re_1e_0$. Thus $e_1\alpha(re_0)e_0 = 0$. Since α is weakly rigid, we have $e_1\alpha(re_0) = e_1\alpha(re_0)e_0 = e_1\alpha(re_0)\alpha(e_0) = 0$. Thus $re_1 = e_0 re_1$. Taking r = 1, we obtain $e_0e_1 = e_1$ and $e_1\alpha(e_0) = 0$. Now assume that k is a positive integer such that

$$e_i\alpha^i(e_0)=0, \quad e_0e_i=e_i,$$

for all $1 \leq i < k$. Then from $e_i\alpha^i(e_0) = 0$ and from the weak rigidness of α , it follows that $\alpha^i(e_ie_0) = \alpha^i(e_i)\alpha^i(e_0) = 0$ for all $1 \leq i < k$. Since α is a monomorphism, we have $e_ie_0 = 0$. Thus $\alpha^j(e_i)e_0 = 0$ for all $1 \leq i < k$ and all j. Now multiplying equation $re_k = \sum_{i+j=k} e_i\alpha^i(re_j)$ on the right by e_0 , we obtain $re_ke_0 = \sum_{i+j=k} e_i\alpha^i(re_j)e_0 = e_k\alpha^k(re_0)e_0 + e_0(re_k)e_0 = e_k\alpha^k(re_0)e_0 + (re_k)e_0$. Thus $e_k\alpha^k(re_0)e_0 = 0$. Since α is weakly rigid, we have $e_k\alpha^k(re_0) = e_k\alpha^k(re_0)\alpha^k(e_0) = 0$. Thus $e_k\alpha^k(e_0) = 0$. Also $re_k = \sum_{i+j=k} e_i\alpha^i(re_j)$. Multiplying on the left by e_0 , by hypothesis, we have

$$e_0 r e_k = \sum_{\substack{i+j=k\\i\neq k}} e_0 e_i \alpha^i(r e_j) = \sum_{\substack{i+j=k\\i\neq k}} e_i \alpha^i(r e_j) = r e_k.$$

Taking r = 1 yields $e_0 e_k = e_k$. By induction, part (2) is satisfied. Now it is easy to see that $e(x)e_0 = e_0$ and $e_0 e(x) = e(x)$. Hence $e(x)R[[x;\alpha]] = e_0R[[x;\alpha]]$.

Let I(R) be the set of all idempotents of R. Let $\{e_0, e_1, \ldots\}$ be a countable family of idempotents of R. We say $\{e_0, e_1, \ldots\}$ has a generalized join in I(R) if there exists an idempotent $e \in I(R)$ such that

- (1) $e_i R(1-e) = 0$, and
- (2) if $f \in I(R)$ is such that $e_i R(1-f) = 0$, then eR(1-f) = 0.

If α is a rigid endomorphism of R, then it was shown in [8] that R is a Baer (a quasi-Baer, resp.) ring if and only if $R[[x;\alpha]]$ is a Baer (a quasi-Baer, resp.) ring. Also an example was given in [8] to show that there exists a reduced right p.q.Baer ring R such that $R[[x;\alpha]]$ is not a right p.q.Baer ring. Here we have

Theorem 5 Let R be a ring with $S_{\ell}(R) \subseteq C(R)$ and α a weakly rigid endomorphism of R. Then the following conditions are equivalent:

- (1) $R[[x; \alpha]]$ is right p.q.Baer;
- (2) R is right p.q.Baer and any countable family of idempotents in R has a generalized join in I(R).

Proof (1) \Longrightarrow (2). Suppose that $R[[x;\alpha]]$ is right p.q.Baer. Let a be an element of R. Then there exists a left semicentral idempotent $e(x)=e_0+e_1x+\cdots+e_nx^n+\cdots\in R[[x;\alpha]]$ such that $r_{R[[x;\alpha]]}(aR[[x;\alpha]])=e(x)R[[x;\alpha]]$. From Lemma 4, $e(x)R[[x;\alpha]]=e_0R[[x;\alpha]]$. Thus $r_{R[[x;\alpha]]}(aR[[x;\alpha]])=e_0R[[x;\alpha]]$. It is clearly that $aRe_0=0$. Thus $e_0\in r_R(aR)$. Hence $e_0R\subseteq r_R(aR)$. Conversely, suppose that $p\in r_R(aR)$. Then for any $f(x)=\sum_{i=0}^\infty a_ix^i\in R[[x;\alpha]]$, $af(x)p=\sum_{i=0}^\infty aa_ix^ip=\sum_{i=0}^\infty aa_i\alpha^i(p)x^i$. Since $aa_ip=0$, we have $aa_i\alpha^i(p)=0$ by the weak rigidness of α . Thus af(x)p=0, which implies that $p\in r_{R[[x;\alpha]]}(aR[[x;\alpha]])$ and hence $p=e_0p\in e_0R$. Therefore $r_R(aR)\subseteq e_0R$. This shows that $r_R(aR)=e_0R$. Thus R is right p.q.Baer.

Now suppose that $\{e_0, e_1, \ldots\}$ is a countable set of idempotents of R. Set

$$\varphi(x) = e_0 + e_1 x + e_2 x^2 + \ldots \in R[[x; \alpha]].$$

Since $R[[x;\alpha]]$ is right p.q.Baer, there exists a left semicentral idempotent $e(x) \in R[[x;\alpha]]$ such that $r_{R[[x;\alpha]]}(\varphi(x)R[[x;\alpha]]) = e(x)R[[x;\alpha]]$. Let $e(x) = f_0 + f_1x + f_2x^2 + \cdots$. Then, by Lemma 4, f_0 is an idempotent of R and $e(x)R[[x;\alpha]] = f_0R[[x;\alpha]]$. Thus $r_{R[[x;\alpha]]}(\varphi(x)R[[x;\alpha])) = f_0R[[x;\alpha]]$. For any $r \in R$, $0 = \varphi(x)rf_0 = e_0rf_0 + e_1\alpha(rf_0)x + e_2\alpha^2(rf_0)x^2 + \cdots$. Thus $e_i\alpha^i(rf_0) = 0$ for every $i = 0, 1, \cdots$. Let $g = 1 - f_0$. Then $e_i\alpha^i(r(1-g)) = 0$ for any $r \in R$. Thus $\alpha^i(e_i)\alpha^i(r(1-g)) = 0$ by the weak rigidness of α . Hence $e_iR(1-g) = 0$ since α is a monomorphism. Suppose that h is an idempotent of R such that $e_iR(1-h) = 0$. Then $e_ir(1-h) = 0$ for any $r \in R$. Since α is weakly rigid, we have $e_ir\alpha^k(1-h) = 0$ for any $r \in R$. Thus, for any $a \in R$ and for any $\psi(x) = a_0 + a_1x + a_2x^2 + \cdots \in R[[x;\alpha]]$,

$$\varphi(x)\psi(x)a(1-h) = \sum_{k=0}^{\infty} \left(\sum_{i+j=k} e_i \alpha^i(a_j) \alpha^k(a(1-h)) \right) x^k$$

$$=\sum_{k=0}^{\infty}\left(\sum_{i+j=k}e_i(\alpha^i(a_j)\alpha^k(a))\alpha^k(1-h)\right)x^k=0.$$

This means that $a(1-h) \in r_{R[[x;\alpha]]}(\varphi(x)R[[x;\alpha]])$ for any $a \in R$. Thus $a(1-h) = f_0a(1-h)$, which implies that ga(1-h) = 0 for any $a \in R$. Thus gR(1-h) = 0. Hence g is a generalized join of the set $\{e_0, e_1, \ldots\}$.

(2) \Longrightarrow (1). Suppose that $\varphi(x) = r_0 + r_1 x + r_2 x^2 + \ldots \in R[[x; \alpha]]$. Then there exist idempotents e_i , $i = 0, 1, \ldots$, such that $r_R(r_i R) = e_i R$. By the hypothesis, the set $\{1 - e_i | i = 0, 1, \ldots\}$ has a generalized join f. Thus $(1 - e_i)R(1 - f) = 0$. For any $\lambda(x) = a_0 + a_1 x + a_2 x^2 + \ldots \in R[[x; \alpha]]$,

$$\varphi(x)\lambda(x)(1-f) = \sum_{k=0}^{\infty} \left(\sum_{i+j=k} r_i \alpha^i(a_j) \alpha^k(1-f) \right) x^k.$$

Since $(1-e_i)a_j(1-f)=0$, we have $(1-e_i)a_j\alpha^j(1-f)=0$ by weak rigidness of α . Thus $a_j\alpha^j(1-f)=e_ia_j\alpha^j(1-f)$. Again by weak rigidness of α and $r_ie_i=0$, it follows that $r_i\alpha^i(e_i)=0$. Thus

$$\varphi(x)\lambda(x)(1-f) = \sum_{k=0}^{\infty} \left(\sum_{i+j=k} r_i \alpha^i (a_j \alpha^j (1-f)) \right) x^k$$

$$= \sum_{k=0}^{\infty} \left(\sum_{i+j=k} r_i \alpha^i (e_i a_j \alpha^j (1-f)) \right) x^k$$

$$= \sum_{k=0}^{\infty} \left(\sum_{i+j=k} r_i \alpha^i (e_i) \alpha^i (a_j \alpha^j (1-f)) \right) x^k = 0.$$

This means that $(1-f)R[[x;\alpha]] \leq r_{R[[x;\alpha]]}(\varphi(x)R[[x;\alpha]])$.

Suppose that $\psi(x) = p_0 + p_1 x + p_2 x^2 + \ldots \in r_{R[[x;\alpha]]}(\varphi(x)R)$. Then from $\varphi(x)R\psi(x) = 0$ it follows that

$$\sum_{i+j=k} r_i \alpha^i(ap_j) = 0, \quad k = 0, 1, 2, \dots,$$

where a is an arbitrary element of R. Thus, since $r_0ap_0 = 0$, one has $p_0 \in r_R(r_0R) = e_0R$. Let $a' \in R$ and take $a = a'e_0$ in $r_1\alpha(ap_0) + r_0ap_1 = 0$. Then $r_1\alpha(a'e_0p_0) + r_0a'e_0p_1 = 0$. But $r_0a'e_0p_1 = 0$. So $r_1\alpha(a'e_0p_0) = 0$. Since $e_0p_0 = p_0$, we have $r_1\alpha(a'p_0) = 0$. Since α is weakly rigid, it follows that $\alpha(r_1)\alpha(a'p_0) = 0$. Thus $r_1a'p_0 = 0$, which implies that $p_0 \in r_R(r_1R) = e_1R$. Also $r_0ap_1 = 0$ for any $a \in R$. This means that $p_1 \in r_R(r_0R) = e_0R$.

Now assume that

$$p_i \in e_i R$$
, $i+j=0,1,2,\cdots,k-1$.

Let $a' \in R$ and take $a = a'e_0$ in $\sum_{i+j=k} r_i \alpha^i(ap_j) = 0$. Then, since $r_0 a'e_0 p_k = 0$, we have

$$r_1\alpha(a'p_{k-1}) + \dots + r_{k-1}\alpha^{k-1}(a'p_1) + r_k\alpha^k(a'p_0)$$

= $r_1\alpha(a'e_0p_{k-1}) + \dots + r_{k-1}\alpha^{k-1}(a'e_0p_1) + r_k\alpha^k(a'e_0p_0) = 0.$

Let $b \in R$ and take $a' = be_1$. Then, since $r_1be_1p_{k-1} = 0$, we have $r_1\alpha(be_1p_{k-1}) = 0$ by the weak rigidness of α . Thus

$$r_2\alpha^2(bp_{k-2}) + \dots + r_{k-1}\alpha^{k-1}(bp_1) + r_k\alpha^k(bp_0)$$

= $r_2\alpha^2(be_1p_{k-2}) + \dots + r_{k-1}\alpha^{k-1}(be_1p_1) + r_k\alpha^k(be_1p_0) = 0.$

Continuing in this manner, we have $r_k \alpha^k(cp_0) = r_k \alpha^k(ce_{k-1}p_0) = 0$, where c is an arbitrary element of R. This implies that

$$r_{k-1}\alpha^{k-1}(cp_1) = 0, \dots, r_1\alpha(cp_{k-1}) = 0, r_0cp_k = 0.$$

From the weak rigidness of α , it follows that $\alpha^i(r_icp_{k-i}) = \alpha^i(r_i)\alpha^i(cp_{k-i}) = 0$ for any $i = 0, 1, \dots, k$. Thus $r_icp_{k-i} = 0$, $i = 0, 1, \dots, k$. Thus $p_{k-i} \in r_R(r_iR) = e_iR$, $i = 0, 1, \dots, k$. Therefore, by induction, we have $p_i \in e_jR$, for any $i, j = 0, 1, \dots$, and so

$$p_i = e_j p_i, \quad i, j = 0, 1, \cdots.$$

Suppose that $r_R(p_iR) = f_iR$, where f_i is a left semicentral idempotent of R. Since e_j is left semicentral, by the hypothesis, e_j is central. Thus we have $p_ir = e_jp_ir = p_ire_j$, which implies that $1 - e_j \in f_iR$. Thus $1 - e_j = f_i(1 - e_j)$ for any i,j. So $(1 - e_j)R(1 - f_i) = 0$. Since f is a generalized join of $\{1 - e_i|i = 0, 1, \ldots\}$, it follows that $fR(1 - f_i) = 0$ for any i. Hence

$$p_i = p_i - p_i f_i = p_i (1 - f_i) = (1 - f_i) p_i$$

= $(1 - f)(1 - f_i) p_i \in (1 - f) R$.

So $\psi(x) \in (1-f)R[[x;\alpha]]$. Now it is easy to see that

$$(1 - f)R[[x; \alpha]] \le r_{R[[x; \alpha]]}(\varphi(x)R[[x; \alpha]]) \le r_{R[[x; \alpha]]}(\varphi(x)R)$$

$$\le (1 - f)R[[x; \alpha]],$$

which implies that $r_{R[[x;\alpha]]}(\varphi(x)R[[x;\alpha]]) = (1-f)R[[x;\alpha]]$. Hence $R[[x;\alpha]]$ is right p.q.Baer.

Let R be an abelian ring (i.e., every idempotent of R is central). Then I(R) is a Boolean algebra where $e \leq f$ means ef = e, and where the join, meet and complement are given by $e \vee f = e + f - ef$, $e \wedge f = ef$, and e' = 1 - e respectively.

Corollary 6 Let R be an abelian ring and α a weakly rigid endomorphism of R. Then the following conditions are equivalent:

- (1) $R[[x;\alpha]]$ is right p.q.Baer;
- (2) R is right p.q.Baer and any countable family of idempotents in R has a join in I(R).

References:

[1] BIRKENMEIER G F. Decompositions of Baer-like rings [J]. Acta Math. Hungar, 1992, 59: 319-326.

- [2] BIRKENMEIER G F. Baer rings and quasi-continuous rings have a MDSN [J]. Pacific J. Math., 1981, 97: 283-292.
- [3] BIRKENMEIER G F, KIM J Y, PARK J K. Polynomial extensions of Baer and quasi-Baer rings [J]. J. Pure Appl. Algebra, 2001, 159: 25-42.
- [4] BIRKENMEIER G F, KIM J Y, PARK J K. On quasi-Baer rings [J]. Contemp. Math., 2000, 259: 67-92.
- [5] BIRKENMEIER G F, KIM J Y, PARK J K. Principally quasi-Baer rings [J]. Comm. Algebra, 2001, 29(2): 639-660.
- [6] BIRKENMEIER G F, KIM J Y, PARK J K. On polynomial extensions of principally quasi-Baer rings [J]. Kyungpook Math. J., 2000, 40: 247-254.
- [7] CLARK W E. Twisted matrix units semigroup algebras [J]. Duke Math. J., 1967, 34: 417-423.
- [8] HONG C Y, KIM N K, KWAK T K. Ore extensions of Baer and P.P.-rings [J]. J. Pure Appl. Algebra, 2000, 151: 215-226.
- [9] KAPLANSKY I. Rings of Operators [M]. Benjamin, New York, 1968.
- [10] KREMPA J. Some examples of reduced rings [J]. Algebra Colloq., 1996, 3: 289-300.
- [11] LIU Zhong-kui. Baer rings of generalized power series [J]. Glasg. Math. J., 2002, 44(3): 463-469.

斜幂级数环的主拟 Baer 性

刘仲奎, 范维丽 (西北师范大学数学系, 甘肃 兰州 730070)

摘要: 设 R 是环,并且 R 的左半中心幂等元都是中心幂等元, α 是 R 的一个弱刚性自同态. 本文证明了斜幂级数环 $R[[x,\alpha]]$ 是右主拟 Baer 环当且仅当 R 是右主拟 Baer 环,并且 R 的任意可数幂等元集在 I(R) 中有广义交,其中 I(R) 是 R 的幂等元集.

关键词: 弱刚性自同态; 主拟 Baer 环; 斜幂级数环.