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Abstract: Let R be a ring such that all left semicentral idempotents are central and a a
weakly rigid endomorphism of R. It is shown that the skew power series ring R|[[z; o] is right
p.q.Baer if and only if R is right p.q.Baer and any countable family of idempotents in R has
a generalized join in I(R), where I(R) is the set of all idempotents of R.

Key words: weakly rigid endomorphism; p.q.Baer ring; skew power series ring.
MSC(2000): 16W60
CLC number: 0153.3

1. Introduction

Throughout this paper, R denotes a ring with unity and C(R) the set of all central elements
of R. For a nonempty subset Y of R, rr(Y) denotes the right annihilator of ¥ in R.

Recall that R is (quasi-) Baer if the right annihilator of every nonempty subset (every
right ideal) of R is generated by an idempotent. In [9] Kaplansky introduced Baer rings to
abstract various properties of AW*-algebras and von Neumann algebras. Clark defined quasi-
Baer rings in [7] and used them to characterize when a finite dimensional algebra with unity over
an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. Further
work on Baer rings and quasi-Baer rings appears in [1-4, 8]. As a generalization of quasi-Baer
rings, G. F. Birkenmeier, J. Y. Kim and J. K. Park in [5] introduced the concept of principally
quasi-Baer rings. A ring R is called right principally quasi-Baer (or simply right p.q.Baer) if
the right annihilator of a principal right ideal of R is generated by an idempotent. Similarly,
left p.q.Baer rings can be defined. A ring is called p.q.Baer if it is both right and left p.q.Baer.
Observe that every biregular ring and every quasi-Baer ring are p.q.Baer rings. For more details
and examples of right p.q.Baer rings!®9).

It was proved in 3, Theorem 1.8] that a ring R is quasi-Baer if and only if R[X] is quasi-
Baer if and only if R[[X]] is quasi-Baer, where X is an arbitrary nonempty set of not necessarily
commuting indeterminates. If R is a reduced ring, then R is Baer if and only if R[X] is Baer if
and only if R[[X]] is Baer [3, Corollary 1.10]. If R is commutative and (S, <) is a strictly totally
ordered monoid, then it is shown in {11, Theorem 7] that R is Baer if and only if [[R5<]], the ring
of generalized power series with coefficients in R and exponents in S, is Baer. It was proved in [6,
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Theorem 2.1] that a ring R is right p.q.Baer if and only if R[z] is right p.q.Baer. If R is an a-rigid
ring, then it was shown in (8, Corollary 15| that R is a right p.q.Baer ring if and only if R{z; @, §]
is a right p.q.Baer ring. For skew power series ring R[|z;]], it was shown in (8, Theorem 21
and Corollary 22] that if « is a rigid endomorphism of R, then R is a Baer (a quasi-Baer, resp.)
ring if and only if R[{z; o]] is a Baer (a quasi-Baer, resp.) ring. Also an example was given in (8]
which shows that there exists a commutative von Neumann regular ring R (hence p.q.Baer) such
that the ring R[[z;]] is not right p.q.Baer. Thus a natural question of characterization of the
right p.q.Baerness of skew power series ring R[[z; ¢]] is raised. In this paper, we give a necessary
and sufficient condition for some rings under which the ring R[[z; @] is right p.q.Baer. We show
that for a ring R with Sp(R) C C(R) and for a weakly rigid endomorphism « of R, R[[z;]] is
right p.q.Baer if and only if R is right p.q.Baer and any countable family of idempotents in R

has a generalized join in I(R).
2. Weakly rigid endomorphism

Let a be an endomorphism of R. According to [8] and [10], « is called a rigid endomorphism
if ra(r) = 0 implies » = 0 for » € R. A ring R is called to be o-rigid if there exists a rigid
endomorphism a of R. Clearly, any rigid endomorphism is a monomorphism and any a-rigid
ring is reduced. Generalizing these concepts, we give the following definition.

Definition 1 Let a be an endomorphism of R. « is called a weakly rigid endomorphism if
(1) « is a monomorphism, and
(2) ifa,b € R are such that ab = 0 then aa(b) = a(a)b = 0.

Example 2 (1) Clearly the identity map of R is weakly rigid.

(2) Let a be a rigid endomorphism of R. It was shown in [8] that if ab = 0 then aa™(b) =
a™(a)b = 0 for any positive integer n. Thus any rigid endomorphism is weakly rigid. But the
converse is not true. For example, suppose that the ring R is not reduced, then the identity map
of R is weakly rigid but not rigid.

(3) Let 8 be a weakly rigid endomorphism of ring Ry and § a ring. Set R; = Ry ® S, the
direct sum of rings Ry and S. Define an endomorphism « of R; via

a(r,s) = (B(r), s).

Then it is easy to see that « is a weakly rigid endomorphism of R;. If § is not rigid, or S is a
ring with a nongero nilpotent element, then « is not rigid.

Proposition 3 Let o be an endomorphism of R. Then o is rigid if and only if o is weakly rigid
and R is reduced.

Proof Let o be an endomorphism of the reduced ring R. If « is weakly rigid and r € R is such
that ra(r) = 0, then a(r)a(r) = 0. Thus a(r) = 0 since R is reduced. Hence r = 0 since o is a
monomorphism. This means that ¢ is rigid. Conversely, if o is rigid, then, by [8], R is reduced.
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Thus the result follows.
3. The right p.q.Baerness of R[[z; a]]

Recall from {3] an idempotent e € R is left (resp. right) semicentral in R if ere = re (resp.
ere = er), for all r € R. Equivalently, 2 = e € R is left (resp. right) semicentral if eR (resp.
Re) is an ideal of R. Since the right annihilator of a right ideal is an ideal, we see that the
right annihilator of a principal right ideal is generated by a left semicentral idempotent in a
right p.q.Baer ring. The set of all left semicentral idempotents of R is denoted by S¢(R). The

following result is a generalization of [6, Proposition 1.5].

Lemma 4 Let a be a weakly rigid endomorphism of R. If e(z) = ep+e1x+... + ez +... €
R|[z; a]] is a left semicentral idempotent of R|[z; ], then

(1) eo is a left semicentral idempotent of R.

(2) eoe; =e;,e5e0 =0, fori=1,2,---.

(3) e(z)R[[z; )] = eoR|[z; 0f].

Proof We complete the proof by adapting the proof of [6, Proposition 1.4].

Let r € R. Since re(z) = e(z)re(z), we have

o0 o0 oo
Sract =3 3 aaree| =35 3 et ot
k=0 k=0 \itj=k k=0 \it+j=k
Thus rex = ZH_J-:,C e;a’(re;) for any k =0,1,---. From reg = egreg it follows that ey € Sy(R),

so part (1) is satisfied. If we multiply equation re; = eja(rep) + egre; on the right by eg, then
rereg = era(reg)eg + egreieg = eja(reg)ep + rereg. Thus eja(reg)ep = 0. Since « is weakly
rigid, we have eia(reg) = eja(regeo) = era(reg)a(eg) = 0. Thus re; = egre;. Taking r = 1, we
obtain ege; = e; and ejafeg) = 0. Now assume that & is a positive integer such that

eiai(eo) = 0, €p€; = €4,

for all 1 < ¢ < k. Then from e;a’(eg) = 0 and from the weak rigidness of a, it follows that
a'(eseq) = a*(e;)a’(ep) = O forall1 < 4 < k. Since a is a monomorphism, we have e;eg = 0. Thus
of(e;)eg =0 forall1 <4 < k and all j. Now multiplying equation rex = 3, +j=k €0’ (Te;) on the
right by eg, we obtain regeg = }:iﬂ-:k e;at(rej)eg = exa®(reg)ep + eo(rex)eo = exa®(reg)eo +
(rex)eq. Thus exa®(reg)eg = 0. Since « is weakly rigid, we have exa* (reo) = exaF(reg)ak(ep) =
0. Thus exa*(eg) = 0. Alsorey, = Ziﬂ=k e;a*(re;j). Multiplying on the left by eg, by hypothesis,
we have Z#k
egreg = Z eoe;a’(re;) = Z eiat(rej) = reg.

i#k i#k

Taking r = 1 yields eger = ex. By induction, part (2) is satisfied. Now it is easy to see that
e(z)eo = eg and epe(z) = e(x). Hence e(z)R|[[z; o]] = eoR[[z; a]].
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Let I(R) be the set of all idempotents of R. Let {eg,e1,...} be a countable family of
idempotents of R. We say {eo, €1, ...} has a generalized join in I(R) if there exists an idempotent
e € I(R) such that

(1) e;R(1—e€) =0, and

(2) if f € I(R) is such that e;R(1 — f) =0, then eR(1 — f) = 0.

If o is & rigid endomorphism of R, then it was shown in {8] that R is a Baer (a quasi-Baer,
resp.) ring if and only if R[[z; a]] is a Baer (a quasi-Baer, resp.) ring. Also an example was given
in {8] to show that there exists a reduced right p.q.Baer ring R such that R[[z;a]] is not a right
p.q.Baer ring. Here we have

Theorem 5 Let R be a ring with Sg(R) C C(R) and a a weakly rigid endomorphism of R.
Then the following conditions are equivalent:

(1) R|[z; ]| is right p.q.Baer;

(2) R is right p.q.Baer and any countable family of idempotents in R has a generalized join
in I(R).

Proof (1)=>(2). Suppose that R{[z;c]] is right p.q.Baer. Let a be an element of R. Then
there exists a left semicentral idempotent e(z) = eg + €1z + - -+ + e,z™ + --- € R[[z; o] such
that 7R(zq)(aR[[z;0]]) = e(z)R][z;a]l. From Lemma 4, e(x)R[[z;0]] = eoRlz;0]]. Thus
TRma)) (@R[[z;0]]) = eoR[[z;al]]. It is clearly that aRep = 0. Thus eo € rr(aR). Hence
eoR C rr(aR). Conversely, suppose that p € rg(aR). Then for any f(z) = Y oo aiz® € R|[z; 0],
af(z)p = Yiopaa’p = Y oopaaiei(p)rt. Since aa;p = 0, we have aa;a’(p) = 0 by the
weak rigidness of . Thus af(z)p = 0, which implies that p € rg(z;a))(aR[[z;]]) and hence
p = eop € eoR. Therefore rr(aR) C egR. This shows that rg(aR) = egR. Thus R is right
p-q.Baer.
Now suppose that {eg,e;, ...} is a countable set of idempotents of R. Set

‘P(x) =e€p+e1x+ 621'2 +...€ R[[z; a]]

Since R|[z;al| is right p.q.Baer, there exists a left semicentral idempotent e(z) € Rf[z; o]} such
that 7r([z;q)) (P(2) R[z; o])) = e(z)R[[z; o]]. Let e(z) = fo+fixz+fax®+---. Then, by Lemma 4, fo
is an idempotent of R and e(z)R[[z; o] = foR[[z; a]}. Thus rg[;q)(¢(z)Rl[z; of]) = foR([z; o]].
For any r € R, 0 = p(z)rfo = eorfo+eia(rfo)r+exa?(rfo)r?+---. Thus e;a’(r fo) = 0 for every
i=0,1,---. Let g =1— fo. Then e;a*(r(1 — g)) = 0 for any r € R. Thus o'(e;)a*(r(1 - g)) =0
by the weak rigidness of «. Hence e;R(1 — g) = 0 since  is a monomorphism. Suppose that
h is an idempotent of R such that e;R(1 — k) = 0. Then e;r(1 — h) = 0 for any r € R. Since
a is weakly rigid, we have e;ra*(1 — h) = 0 for any r € R. Thus, for any a € R and for any
P(z) = ap + a17 + apz® + - - € R|[z; o],

P~ 1) =3 ( > eoa)a* (a1 - h))) 2+

k=0 \it+j=k
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= Z Z ei(at(aj)af (a))ak (1 — h)) z* = 0.
k=0 \it+j=k

This means that a(l — h) € rgj[z;0) (@(x)R[z; a]]) for any a € R. Thus a(1 — k) = foa(l — h),
which implies that ga(l — k) = 0 for any a € R. Thus gR(1 — h) = 0. Hence g is a generalized
join of the set {eg,e1,...}. .

(2)==(1). Suppose that ¢(z) = ro+r1z+r2z+. .. € R[[z; o]]. Then there exist idempotents
e, 1 = 0,1,..., such that rg(r;R) = e;R. By the hypothesis, the set {1 — ;i =0,1,...} hasa
generalized join f. Thus (1 — e;)R(1 — f) = 0. For any A(z) = ap + a1z + @222 +... € R[[z;a]],

p@Me)1 - =D D ria*(a)a*(1 - 5) | 2~
k=0 \it+j=k

Since (1 — e;)a;(1 — f) = 0, we have (1 — e;)a;e?(1 — f) = 0 by weak rigidness of a. Thus

ajai(l — f) = eaja?(1 — f). Again by weak rigidness of o and 7e; = 0, it follows that

r;at(e;) = 0. Thus

M8

p@)M=)(1 - f) = > riei(a;of (1~ f))) z*

k=0 \itj=k
= Z Z riat(eja;0f (1 — f)) | z*
k=0 \it+i=k

M

a
Il
=}

i+i=k

Z ria(e;)at (a;0? (1 — f))) z* = 0.

This means that (1 — f)R[[z; a]] < 7g{[z;q)) (¢(z) R[[z; o]]).
Suppose that 9(z) = po + P12 + P22 + . .. € TR[[z;05)(¢(z)R). Then from @(z)Ry(z) =0 it
follows that
Z riat(ap;) =0, k=0,1,2,...,
i+i=k
where a is an arbitrary element of R. Thus, since roapy = 0, one has po € rr(roR) = eR.
Let o’ € R and take @ = a’eg in ma(apg) + roap; = 0. Then ra(a’eopo) + roa’egps = 0. But
roa’eopr = 0. So riafa’egpo) = 0. Since egpo = po, we have ria(a’py) = 0. Since a is weakly
rigid, it follows that a(r;)a(a’pg) = 0. Thus r1a’py = 0, which implies that pp € rg(r1R) = e; R.
Also roap; = 0 for any a € R. This means that p; € rg(roR) = eoR.
Now assume that
pi€eR, i+37=012,---k—1.

Let o’ € R and take a = a’eg in 3, ;¢ r;a*(ap;) = 0. Then, since rga’egpx = 0, we have

ria(a’pe—1) + - + re—10¥7(a'p1) 4+ rra® (a'po)

=ria(a’eopr—1) + - .. + rr_10" " (a'eopy ) + o (a’egpo) = 0.
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Let b € R and take a’ = be;. Then, since ribe;pr—1 = 0, we have rya(be;px—1) = 0 by the weak
rigidness of «. Thus

202 (bpk—2) + . . . + re—10* 1 (bp1) + rea® (bpo)
= rod?(berpr—2) + . . . + re_10F 1 (beypy) + rra®(beypo) = 0.

Continuing in this manner, we have rga®(cpg) = rra®(cex_1po) = 0, where ¢ is an arbitrary
element of R. This implies that

rk—16*"(ep1) =0, -+, malepr—1) =0, rocpr = 0.

From the weak rigidness of «, it follows that o*(r;cpr—i) = a*(ri)a(cpr—i) = 0 for any i =
0,1,---,k. Thus riepe—s = 0, ¢ = 0,1,---,k. Thus pg—; € rr(riR) = R, i = 0,1,---,k.
Therefore, by induction, we have p; € ¢;R, for any ,5 = 0,1, --, and so

Di = €5Ps, Z’J=0711

Suppose that rr(p;R) = f;R , where f; is a left semicentral idempotent of R. Since e; is left
semicentral, by the hypothesis, e; is central. Thus we have p;r = e;p;r = p;re;, which implies
that 1 —e; € fiR. Thus 1 —e; = fi(1 — e;) for any 4,j. So (1 — ¢;)R(1 — f;) = 0. Since f is a
generalized join of {1 — ¢;|i = 0,1,...}, it follows that fR(1 — f;) = O for any i. Hence

pi=pi—pifi=pi(l— fi) = (1 - fi)ps
=(1-fA-fipic(1-fR
So ¢¥(z) € (1 — f)R[[z; a)]. Now it is easy to see that
(1 = f)R[[z; o]] < 7R{[zia)) (¥(2)R[[z; ]]) < rR[z;a1(0(z)R)
< (1 - NR[z; o],

which implies that rg((z;a)) (0(z)R[[z; ]]) = (1 — f)R[[z; o]]. Hence R[[z;al]] is right p.q.Baer.

Let R be an abelian ring (i.e., every idempotent of R is central). Then I(R) is a Boolean
algebra where ¢ < f means ef = e, and where the join, meet and complement are given by
eVf=e+ f—ef,eNf=cef, and ¢ =1 — e respectively.

Corollary 6 Let R be an abelian ring and o a weakly rigid endomorphism of R. Then the
following conditions are equivalent:

(1) R|[z;¢]] is right p.q.Baer;

(2) R is right p.q.Baer and any countable family of idempotents in R has a join in I(R).
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